Advertisement

Weitere statistische Verteilungen und Begriffe

  • R. H. Leaver
  • T. R. Thomas
Chapter

Zusammenfassung

Nachdem wir uns bisher hauptsächlich mit stetigen Merkmalsvariablen beschäftigt haben, wollen wir unsere Aufmerksamkeit nun auf eine Reihe von Verteilungen richten, die geeignet sind, das Verhalten stetiger Daten zu beschreiben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen

  1. [1]
    A. Bennett and G. R. Higginson. Hydrodynamic lubrication of soft solids. J. Mech. Engng. Sci. 12 (1970), 218–22.CrossRefGoogle Scholar
  2. [2]
    T. R. Thomas, Correlation analysis of the structure of a ground surface, Proc. 13th Int. Machine Tool Design and Research Conf., Macmillan, London, 1973, 303–6.Google Scholar
  3. [3]
    T. R. Thomas and S. D. Probert, Establishment of contact parameters from surface profiles, J. Phys. D3 (1970), 277–89.CrossRefGoogle Scholar
  4. [4]
    E. Rabinowitz, Friction and Wear of Materials, Wiley, New York, 1965.Google Scholar
  5. [5]
    T. R. Thomas and S. D. Probert. Correlations for thermal contact conductance in vacuo, Trans. Am. Soc. Mech. Engrs 94C (1972), 276–81.Google Scholar
  6. [6]
    D. Dowson and G. R. Higginson, Elasto-Hydrodynamic Lubrication, Pergamon Press, London, 1966.Google Scholar
  7. [7]
    J. A. Greenwood, Presentation of elastohydrodynamic film-thickness results. J. Mech. Engng. Sci. 11 (1969), 128–32.CrossRefGoogle Scholar
  8. [8]
    T. R. Thomas, Precognition experiments with a time-sharing computer (in the press).Google Scholar
  9. [9]
    D. Rigg and G. Drummond, Private communication.Google Scholar
  10. [10]
    J. Peklenith, New developments in surface characterization and measurements by means of random process analysis. Proc. Inst. Mech. Engrs 182, Part 3k (1967–8), 108–26.CrossRefGoogle Scholar

Kapitel 9

  1. The median ranks of sample values in their population with an application to certain fatigue studies. Industrial Mathematics, 2 (1951)Google Scholar
  2. C. Lipson and N. J. Sheth, Statistical Design and Analysis of Engineering Experiments, McGraw-Hill, New York, 1973.Google Scholar
  3. R. A. Mitchell, Introduction to Weibull analysis. Pratt and Whitney Report. No. 3001, 1967.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1977

Authors and Affiliations

  • R. H. Leaver
  • T. R. Thomas

There are no affiliations available

Personalised recommendations