Skip to main content

Zusammenfassung

Es liegt eine Vielzahl von Befunden zu neuropathologischen Auffälligkeiten bei Schizophrenen vor. Diese sollen hier nicht unstrukturiert aufgezählt, sondern im Rahmen zweier Hauptkonzepte zur Ätiopathogenese der Schizophrenie (frühe vs. späte Störungshypothese) diskutiert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akbarian S, Bunney WE, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal-lobe of schizophrenics implies disturbances of cortical development. Archives of General Psychiatry 1993a; 50: 169–177.

    Article  Google Scholar 

  • Akbarian S, Vinuela A, Kim JJ, Potkin SG, Bunney WE, Jones EG. Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Archives of General Psychiatry 1993b; 50: 178–187.

    Article  Google Scholar 

  • Arnold SE, Hyman BT, van Hoesen GW, Damasio AR. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Archives of General Psychiatry 1991; 48: 625–632.

    Article  Google Scholar 

  • Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ, Trojanowski JQ. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cor- tical-hippocampal interactions. American Journal of Psychiatry 1995; 152:738–748.

    Google Scholar 

  • Arnold SE, Trojanowski JQ. Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathologica 1996; 92:217–231.

    Article  Google Scholar 

  • Arnold SE, Franz BR, Trojanowski JQ, Moberg PJ, Gur RE. Glial fibrillary acidic protein immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathologica 1996; 91: 269–277.

    Article  Google Scholar 

  • Bachneff SA. Positron emission tomography and magnetic resonance imaging: A review and a local circuit neurons hypo (dys) function hypothesis of 14schizophrenia. Biological Psychiatry 1991; 30: 857–886.

    Article  Google Scholar 

  • Barbeau D, Liang JJ, Robitaille Y, Quirion R, Srivastava LK. Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proceedings of the National Academy of Science of the United States of America 1995; 92: 2785–2789.

    Article  Google Scholar 

  • Barr CE, Mednick SA, Münk-Jorgensen P. Exposure to influenza epidemics during gestation and adult schizophrenia. Archives of General Psychiatry 1990; 47: 869–874.

    Article  Google Scholar 

  • Beckmann H, Jakob H. Pränatale Entwicklungsstörungen von Himstmkturen bei schizophrenen Psychosen. Nervenarzt 1994; 65: 454–463.

    Google Scholar 

  • Benes FM. Neurobiological investigations in cingulate cortex of schizophrenic brain. Schizophrenia Bulletin 1993; 19:537–549.

    Google Scholar 

  • Benes FM, Davidson J, Bird ED. Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Archives of General Psychiatry 1986; 43: 31–35.

    Article  Google Scholar 

  • Benes FM, Mcsparren J, Bird ED, Sangio- vanni JP, Vincent SL. Deficits in small intemeurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Archives of General Psychiatry 1991; 48: 996–1001.

    Article  Google Scholar 

  • Bogerts B, Hantsch H, Herzer M. A morphometric study of the dopamine-con- taining cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biological Psychiatry 1983; 18: 951–969.

    Google Scholar 

  • Bourgeois JP, Rakic P. Changes in synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience 1993; 13: 2801–2820.

    Google Scholar 

  • Braak H. Architectonics of the human telencephalic cortex. Springer: Berlin 1980.

    Book  Google Scholar 

  • Bracha HS, Torrey EF, Gottesman II, Gigelow LB, Cunniff C. Second-trimester markers of fetal size in schizophrenia: a study of monozygotic twins. American Journal of Psychiatry 1992; 149: 1355–1361.

    Google Scholar 

  • Brewer GJ, Cotman CW. NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons. Neuroscience Letters 1989; 99: 268–273.

    Article  Google Scholar 

  • Brown GW, Birley JLT. Crises and life changes and the onset of schizophrenia. Journal of Health and Social Behavior 1968; 9: 203–214.

    Article  Google Scholar 

  • Buka SL, Tsuang MT, Lipsitt LP. Pregnancy/ delivery complications and psychiatric diagnosis. Archives of General Psychiatry 1993; 50: 151–156.

    Article  Google Scholar 

  • Castle D, Murray RM. The neurodevelop- mental basis of sex differences in schizophrenia. Psychological Medicine 1991; 21: 565–575.

    Article  Google Scholar 

  • Collonier M. The electron microscopic analysis of the neuronal organization of the cerebral cortex. In: Schmitt FO, Worden FG, Dennis SE (Hrsg.) Organization of the cerebral cortex. MIT Press: Cambridge 1981; 125–151.

    Google Scholar 

  • Conrad A J, Abebe T, Austin R, Forsythe S, Scheibel AB. Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Archives of General Psychiatry 1991;48:413–417.

    Article  Google Scholar 

  • Crow TJ, Ball J, Bloom SR, Brown R, Bruton CJ, Colter N, Frith CD, Johnstone EC, Owens DG, Roberts GW. Schizophrenia as anomaly of development of cerebral asymmetry. A postmortem study and a proposal concerning the genetic basis of the disease. Archives of General Psychiatry 1989; 46: 1145–1150.

    Article  Google Scholar 

  • Eagles JM, Gibson I, Bremner MH, Clunie F, Ebmeir KP, Smith NC. Obsetric complications in DSM-III schizophrenics and their siblings. Lancet 1990; 335:1139–1141.

    Article  Google Scholar 

  • Eastwood SL, Burnet PWJ, Harrison PJ. Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 1995; 66: 303–319.

    Article  Google Scholar 

  • Eaton WW, Tien AY, Poeschla BD. Epidemiology of schizophrenia. In: Den Boer JA, Westenberg HGM, van Praag HM (Hrsg.) Advances in the neurobiology of schizophrenia. John Wiley & Sons: Chichester 1995: 27–58.

    Google Scholar 

  • Epstein HT. Growth spurts during brain development: Implication for educational policy and practice. In: Chall JS, Mirsky AF (Hrsg.). Education and the brain. University of Chicago Press: Chicago 1978.

    Google Scholar 

  • Epstein HT. Correlated brain and intelligence development in humans. In: Hahn ME, Jensen C, Dudek BC (Hrsg.). Development and evolution of brain size. Academic Press: New York 1979.

    Google Scholar 

  • Etienne P, Baudry M. Role of excitatory amino acid neurotransmission in synaptic plasticity and pathology: an integrative hypothesis concerning the pathogenesis and evolutionary advantages of schizo- phrenia-related genes. Journal of Neural Transmission 1990; 29: 39–48.

    Google Scholar 

  • Falkai P, Bogerts B. Cell loss in the hippocampus of schizophrenics. European Archives of Psychiatry and Neurological Sciences 1986; 236: 154–161.

    Article  Google Scholar 

  • Falkai P, Bogerts B, Rozumek M. Limbic pathology in schizophrenia: The entorhinal region - a morphometric study. Biological Psychiatry 1988;24:515–521.

    Article  Google Scholar 

  • Farangou S, Murray RM. Imaging as a tool in exploring the neurodevelopment and genetics of schizophrenia. British Medical Bulletin 1996; 52: 587–596.

    Google Scholar 

  • Feinberg I. Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research 1982a; 17: 319–334.

    Article  Google Scholar 

  • Feinberg I. Schizophrenia and the late matu- ral brain changes in man. Psychopharma- cological Bulletin 1982b; 18: 29–31.

    Google Scholar 

  • Fowles DC. Schizophrenia: Diathesis-stress revisited. Annual Review of Psychology 1992; 43: 303–336.

    Google Scholar 

  • Frith CD, Done JD. Towards a neuropsychology of schizophrenia. British Journal of Psychiatry 1988; 153: 437–443.

    Article  Google Scholar 

  • Galdos PM, van Os JJ, Murray RM. Puberty and the onset of psychosis. Schizophrenia Research 1993; 10: 7–14.

    Article  Google Scholar 

  • Garthwaite J. NMDA receptors, neuronal development, and neurodegeneration. In: Collinridge GL, Watkins JC (Hrsg.). The NMDA receptor. Oxford University Press: Oxford 2nd ed. 1994.

    Google Scholar 

  • Hafner H. Epidemiology of schizophrenia. In: Hafner H, Gattaz WF, Janzarik W (Hrsg.). Search for the causes of schizophrenia. Springer: Berlin 1987; 47–74.

    Chapter  Google Scholar 

  • Heinsen Y, Beckmann H. Further cyto- architectonic and quantitative studies in the entorhinal region of schizophrenics and normal controls by means of a modified Nissl technique. In: Bunney WE, Hippius, H, Laakmann G, Schmauss M (Hrsg.). Neuropsychopharmacology. Springer, Berlin 1990; 703–713.

    Google Scholar 

  • Heyman I, Murray RM. Schizophrenia and neurodevelopment. Journal of the Royal College of Physicians of London 1992; 26: 143.

    Google Scholar 

  • Hoffman RE, Dobscha SK. Cortical pruning and the development of schizophrenia: A computer model. Schizophrenia Bulletin 1989; 15: 477–490.

    Google Scholar 

  • Humphrey T. The development of the human hippocampal formation correlates with some aspects of its phylogenetic history. In: Hassler R, Stephan H (Hrsg.). Evolution of the forebrain. Thieme: Stuttgart 1966; 104–116.

    Google Scholar 

  • Huttenlocher PR. Synaptic density and human frontal cortex: Developmental changes and effects of aging. Brain Research 1979; 163: 227–243.

    Google Scholar 

  • Huttenlocher PR, de Courten C. The development of synapses in striate cortex of man. Human Neurobiology 1987; 6:1–9.

    Google Scholar 

  • Jakob H, Beckmann H. Clinical-neuro- pathological studies of developmental disorders in the limbic system in chronic schizophrenia. In: Schizophrenia: an integrative view. XIV Congress CINP. Ricerca Scientifica Educazione Permanente [SuppL] 1984; 39: 81.

    Google Scholar 

  • Jakob H, Beckmann H. Prenatal developmental disturbances in the limbic alio- cortex in schizophrenics. Journal of Neural Transmission 1986; 65: 303–326.

    Article  Google Scholar 

  • Jakob H, Beckmann H. Gross and histological criteria for developmental disorders in brains of schizophrenics. Journal of the Royal Society of Medicine 1989; 82: 466–469.

    Google Scholar 

  • Jakob H, Beckmann H. Circumscribed malformation and nerve cell alterations in the entorhinal cortex of schizophrenics. Pathogenetic and clinical aspects. Journal of Neural Transmission 1994; 98: 83–106.

    Article  Google Scholar 

  • Jernigan TL, Archibald SL, Berhow MT, Sowell ER, Foster DS, Hesselink JR. Cerebral structure on MRI, Part I: Localization of age-related changes. Biological Psychiatry 1994; 29: 55–67.

    Article  Google Scholar 

  • Kahle W. Die Entwicklung der menschlichen Großhirnhemisphäre. Springer: Berlin 1969.

    Google Scholar 

  • Keshavan MS, Pettegrew JW, Pachalingam KS, Kaplan D, Bozik E. Phosphorus-31 magnetic resonance spectroscopy detects altered brain metabolism before onset of schizophrenia. Archives of General Psychiatry 1991; 48: 1112–1113.

    Article  Google Scholar 

  • Keshavan MS, Pettegrew JW, Ward R. Are membrane phospholipid changes in schizophrenia familial? Biological Psychiatry 1993; 33: 45A.

    Article  Google Scholar 

  • Keshavan MS, Anderson S, Pettegrew JW. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Fein- berg hypotheses revisited. Journal of Psychiatric Research 1994; 28: 239–265.

    Article  Google Scholar 

  • Kovelman JA, Scheibel AB. A neuro- histological correlate of schizophrenia. Biological Psychiatry 1984; 19:1601–1621.

    Google Scholar 

  • Lewis SW, Murray RM. Obstretic complications, neurodevelopmental deviance, and risk of schizophrenia. Journal of Psychiatric Research 1987; 21: 413–421.

    Article  Google Scholar 

  • Lukoff D, Snyder K, Ventura J, Nuechterlein KH. Life events, familial stress, and coping in the developmental course of schizophrenia. Schizophrenia Bulletin 1984; 10: 258–292.

    Google Scholar 

  • Machón RA, Mednick SA, Schulsinger F. The interaction of saisonality, place of birth, genetic risk and subsequent schizophrenia in a high risk sample. British Journal of Psychiatry 1983; 143: 383–388.

    Article  Google Scholar 

  • Mc Grath JJ, Murray RM. Risk factors for schizophrenia; from conception to birth. In: Hirsch S, Weinberger D (Hrsg.). Search for the causes of schizophrenia. Blackwell: Oxford 1995; 187–205.

    Google Scholar 

  • Meehl PE. Schizotaxia, schizotypia, schizophrenia. American Psychologist 1962; 17: 827–838.

    Article  Google Scholar 

  • Minshew NJ, Panchalingam K, Dombrowski SM, Pettegrew JW. Developmentally regulated changes in brain membrane metabolism. Biological Psychiatry 1992; 31: 62A.

    Google Scholar 

  • Murray RM, Lewis SW, Owen MJ, Foerster A. The neurodevelopmental origins of dementia praecox. In: Murray RMO, Callaghan E, Castle D, Lewis SD (Hrsg.). Schizophrenia: The major issues. Heinemann: London 1988.

    Google Scholar 

  • Murray RM, Owen MJ, Goodman R, Lewis SW. A neurodevelopmental perspective on some epiphenomena of schizophrenia. In: Cazullo CL (Hrsg.). Plasticity and morphology of the CNS. MTP Press: Lancester 1987.

    Google Scholar 

  • Naftolin F, Garcia-Segura LM, Keefe D. Estrogen effects on the synaptology and neural membranes of the rat hypothalamic arcuate nucleus. Biology of Reproduction 1990; 42: 21–28.

    Article  Google Scholar 

  • Nuechterlein KH, Dawson ME. Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophrenia Bulletin 1987; 10: 160–203.

    Google Scholar 

  • Pakkenberg B. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenia. Archives of General Psychiatry 1990; 47: 1023–1028.

    Article  Google Scholar 

  • Parnas J, Schulsinger F, Teasdale TW, schulsinger H, Feldman PM, Mednick SA. Perinatal complications and clinical outcome within the schizophrenia spectrum. British Journal of Psychiatry 1982; 140: 416–420.

    Article  Google Scholar 

  • Pettegrew JW, Keshavan MS, Panchalin- gam K, Strychor S, Kaplan DB, Tretta MG, Allen M. Alterations in brain high- energy phosphate and membrane phospholipid metabolism in first-episode, drug- naive schizophrenics: A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Archives of General Psychiatry 1991;48:563–568.

    Article  Google Scholar 

  • Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative magnetic imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology 1994;51:874–887.

    Article  Google Scholar 

  • Pulver AE, Brown CH, Wolyniec PS, Mc Grath JJ, Adler L, Tam D, Carpenter WT, Childs B. Risk factors in schizophrenia: Season of birth, gender, and familial risk. British Journal of Psychiatry 1992; 160: 65–71.

    Article  Google Scholar 

  • Rakic P. Cell migration and neuronal ectopias in the brain. In: Bergsma D (ed.) Morphogenesis and malformation of the face and brain. Liis: New York 1975; 95–129.

    Google Scholar 

  • Rakic P. Defects of neuronal migration and the pathogenesis of cortical malformations. Progress in Brain Research 1988a; 753:15–37.

    Article  Google Scholar 

  • Rakic P. Specification of cerebral cortical areas. Science 1988b; 241: 170–176.

    Article  Google Scholar 

  • Reddy R, Mukherjee S, Schnur D. Pregnancy and birth complications and premorbid functioning in schizophrenic and bipolar patients. Biological Psychiatry 1989; 25: 93A.

    Google Scholar 

  • Remschmidt HE, Schultz E, Martin W, Warnke A, Trott GE. Childhood onset schizophrenia: History of concept and recent studies. Schizophrenia Bulletin 1994; 20: 727–745.

    Google Scholar 

  • Roberts GW, Colter N, Lofthouse R, Bogerts B, Zech M, Crow TJ. GUosis in schizophrenia: A survey. Biological Psychiatry 1986; 21: 1043–1050.

    Article  Google Scholar 

  • Roberts GW, Colter N, Lofthouse R, Johnstone EC, Crow TJ. Is there gliosis in schizophrenia? Investigation of temporal lobe. Biological Psychiatry 1987; 22, 1459–1468.

    Article  Google Scholar 

  • Rosenthal D. Genetic theory and abnormal behavior. McGraw-Hill, New York 1970.

    Google Scholar 

  • Rosoklija G, Kaufman MA, Liu D, Hays AP, Latov N, Waniek C, Keilp JG, Wu A, Sadiq Sa, Gorman J, Prohovnik I, Dwork AJ. Subicular MAP-2 immunoreactivity in schizophrenia. Society of Neuroscience Abstracts 1995; 21, 2126.

    Google Scholar 

  • Saugstad LF. Age at puberty and mental illness: Towards a neurodevelopmental etiology of Kraepelin’s endogenous psychoses. British Journal of Psychiatry 1989; 155, 536–544.

    Article  Google Scholar 

  • Sham PO, Callaghan E, Takei N, Murray GK, Hare EH, Murray RM. Increased risk of schizophrenia following prenatal exposure to influenza. British Journal of Psychiatry 1992; 160, 461–466.

    Article  Google Scholar 

  • Stertz G. Einleitung. In: Bumke O (Hrsg.).Ein Handbuch der Geisteskrankheiten, Band 7, Spezieller Teil III: Die exogenen Reaktionsformen und die organischen Psychosen. Springer: Berlin 1928; 1–13.

    Google Scholar 

  • Stevens CD, Altshuler LL, Bogerts B, Falkai P. Quantitative study of gliosis in schizophrenia and Huntington’s chorea. Biological Psychiatry 1988; 24: 697–700.

    Article  Google Scholar 

  • Stevens JR. Abnormal synaptic reinnerva- tion as the basis of schizophrenia: A hypothesis. Archives of General Psychiatry 1992; 49: 238–243.

    Article  Google Scholar 

  • Storm-Mathisen J, Otterson OP. Immuno- cytochemistry of glutamate at the synaptic level. Journal of Histochemisty and Cyto- chemisty 1990; 38: 1733–1743.

    Article  Google Scholar 

  • Takei N, Sham P, Murray RM. Unpublished manuscript 1992.

    Google Scholar 

  • Todd RD. Neural development is regulated by classical neurotransmitters: Dopamine D2 receptor stimulation enhances neurite outgrowth. Biological Psychiatry 1992; 31:794.

    Google Scholar 

  • Torrey EF, Rawlings R, Waldmann IN. Schizophrenic births and viral diseases in two states. Schizophrenia Research 1988; 1:73–77.

    Article  Google Scholar 

  • Verdoux H, Bourgeois M. A comparative study of obstretic history in schizophrenics, bipolar patients and normal subjects. Schizophrenia Research 1993; 9: 67–69.

    Article  Google Scholar 

  • Watson CG, Kucula T, Tilleskjor C, Jacobs L. Schizophrenic birth saisonalitity in relation to the incidence of infectious diseases and temperature extremes. Archives of General Psychiatry 1984; 41:85–90.

    Article  Google Scholar 

  • Williamson P, Drost D, Stanley J, Carr T, Morrison S, Merskey H. Localized phosphorus 31 magnetic resonance spectroscopy in chronic schizophrenic patients and normal controls. Archives of General Psychiatry 1991; 48: 578.

    Article  Google Scholar 

  • Zubin J. Scientific models for psycho- pathology in the ‘70s. Seminars in Psychiatry 1972; 4: 283–296.

    Google Scholar 

  • Zubin J, Spring B. Vulnerability - A new view of schizophrenia. Journal of Abnormal Psychology 1977; 86: 103–126.

    Article  Google Scholar 

Literatur

  • Andreasen NC, Olsen S, Dennert JW, Smith MR. Ventricular enlargement in schizophrenia. Relationship to positive and negative symptoms. American Journal of Psychiatry 1982; 139: 297–302.

    Google Scholar 

  • Andreasen NC, Nasrallah HA, Dunn V, Olson SC, Grove WM, Erhardt JC, Coffman JA, Crosset JHM. Structural abnormalities in the frontal system in schizophrenia. Archives of General Psychiatry 1986; 43: 136–144.

    Article  Google Scholar 

  • Andreasen NC. Das funktionsgestörte Gehirn. Einführung in die biologische Psychiatrie. Karger: Basel 1990.

    Google Scholar 

  • Andreasen NC, Ehrhardt JC, Swayze VW, Alliger RJ, Yuh WT, Cohen G, Zie- bell S. Magnetic resonance imaging of the brain in schizophrenia: the pathophysiological significance of structural abnormalities. Archives of General Psychiatry 1990; 47: 35–44.

    Article  Google Scholar 

  • Andreasen NC, Cizadlo T, Harris G, Swayze VO, Leary DS, Cohen G, Ehrhardt J, Yuh WT. Voxel processing techniques for the antemortem study of neuroanatomy and neuropathology using magnetic resonance imaging. Journal of Neuropsychiatry and Clinical Neuroscience 1993; 5: 121–130.

    Google Scholar 

  • Andeasen NC, Arndt S, Swayze V, Cizadlo T, Flaum MO, Leary D, Ehrhardt JC, Yuh WT. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 1994; 266: 294–298.

    Article  Google Scholar 

  • Andreasen NC, Paradiso S, O’Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction of the cortical-subcortical-cerebellar circuitry. Schizophrenia Bulletin 1998; 24: 203–218.

    Google Scholar 

  • Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ, Trojanowski JQ. Smaller neuron size in schizophrenia in hippocampal subfields that mediate corti- cal-hippocampal interactions. American Journal of Psychiatry 1995; 152: 738–748.

    Google Scholar 

  • Arnold SE, Franz BR, Trojanowski JQ, Moberg PJ, Gur RE. Glial fibrillary acidic protein immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathologica 1996; 91: 269–277.

    Article  Google Scholar 

  • Asano N. Pneumencepholographic study of schizophrenia. In: Mitsuda H (Hrsg.). Clinical genetics in psychiatry: Problems in nosological classifications. Igaku Shoin Ltd.: Tokyo 1967; 209–219.

    Google Scholar 

  • Barta PE, Pearlson GD, Powers RE, Richard SS, Tune LE. Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. American Journal of Psychiatry 1990; 147: 1457–1462

    Google Scholar 

  • Benes FM, Sorensen I, Bird ED. Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophrenia Bulletin 1991; 17: 597–608.

    Google Scholar 

  • Berze J. Primary insufficiency of mental activity. F. Deuticke: Leipzig 1914.

    Google Scholar 

  • Besson JAO, Montgomery SA, Perris C, Smith FW. Nuclear magnetic brain imaging in chronic schizophrenia. British Journal of Psychiatry 1987; 150: 161–163.

    Article  Google Scholar 

  • Bogerts B, Hantsch H, Herzer M. A morphometric study of the dopamine-con- taining cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biological Psychiatry 1983; 18: 951–969.

    Google Scholar 

  • Bogerts B, Meertz E, Schonfeldt-Bausch R. Basal ganglia and limbic system pathology in schizophrenia. Archives of General Psychiatry 1985; 42: 784–791.

    Article  Google Scholar 

  • Bogerts B, Falkai P, Haupts M, Greve B, Ernst S, Tapernon-Franz U, Heinzmann U. Post-mortem volume measurements of limbic system and basal ganglia structures in chronic schizophrenics. Initial results from a new brain collection. Schizophrenia Research 1990; 3: 295–301.

    Article  Google Scholar 

  • Bogerts B, Lieberman JA, Ashtari M, Bilder RM, Degreef G, Lerner G, Johns C, Masiar S. Hippocampus-amygdala volumes and psychopathology in chronic schizophrenia. Biological Psychiatry 1993; 33: 236–246.

    Article  Google Scholar 

  • Breier A, Buchanan RW, Elkashef A, Munson RC, Kirkpatrick B. Brain morphology and schizophrenia: a magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Archives of General Psychiatry 1992; 49: 921–926.

    Article  Google Scholar 

  • Broadbent DE. Decision and stress. Academic Press: London 1971.

    Google Scholar 

  • Buchanan RW, Breier A, Kirkpatrick B, Elkashef A, Munson RC, Gellad F, Carpenter W. Structural abnormalities in deficit versus nondeficit schizophrenia. American Journal of Psychiatry 1993; 150: 59–65A.

    Google Scholar 

  • Buchsbaum MS, Someya T, Teng CY, Abel L, Chin S, Najafi A, Haier RJ, Wu J, Bunney Jr we. pet and MRI of the thalamus in never-medicated patients with schizophrenia. American Journal of Psychiatry 1996; 153: 191–199.

    Google Scholar 

  • Cannon TD, Marco E. Structural brain abnormalities as indicators of vulnerabiltiy to schizophrenia. Schizophrenia Bulletin 1994; 20: 89–102.

    Google Scholar 

  • Clarke B. Arthur Wigan and the duality of mind. Psychological Medicine, Monograph Suppl 1987; 11.

    Google Scholar 

  • CoLLicuTT JR, Hemsley DR. Schizophrenia: A disruption of the stream of thought. Unpublished manuscript 1985.

    Google Scholar 

  • Crow TJ. Molecular pathology of schizophrenia: more then one disease process? British Medical Journal 1980a; 80: 66–68.

    Article  Google Scholar 

  • Crow TJ. Positive and negative schizophrenic symptoms and the rule of dopamine. British Journal of Psychiatry 1980b; 137: 383–386.

    Google Scholar 

  • Crow TJ. Two syndromes of schizophrenia as one pool of the continuum of psychosis. In: Henn FA, De Lisi LE (Hrsg.). Handbook of schizophrenia. Vol. 2: Neuro- chemistry and neuropharmacology of schizophrenia. Elsevier: Amsterdam 1987; 17–47.

    Google Scholar 

  • Crow TJ. Brain changes and negative symptoms in schizophrenia. Psychopathology 1995; 28: 18–21.

    Article  Google Scholar 

  • Damasio AR, Tranel D, Damasio H. Individuals with sociopathic behaviour caused by frontal damage fail to respond automatically to social stimuli. Behavioral Brain Research 1990; 41: 81–94.

    Article  Google Scholar 

  • David AS. Reading about the split brain syndrome. British Journal of Psychiatry 1989; 154: 422–425.

    Article  Google Scholar 

  • David AS. Schizophrenia and the corpus callosum: Developmental, structural and functional relationships. Behavioral Brain Research 1994; 64 (1–2): 203–211.

    Article  Google Scholar 

  • David AS, Wacharasindhu A, Lishman WA. Developmental abnormalities of the corpus callosum and severe psychiatric disorders: Review and case series. Journal of Neurology, Neurosurgery and Psychiatry 1993; 56: 85–93.

    Article  Google Scholar 

  • Delisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R. Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Research 1997; 74: 129–140.

    Article  Google Scholar 

  • Degreef G, Ashtari M, Bogerts B, Bilder RM, Jody DM, Alvir JMJ, Lieberman JA. Volumes of ventricular system subdivisions measured from magnetic resonance imaging in first-episode schizophrenic patients. Archives of General Psychiatry 1992a; 49: 531–537.

    Article  Google Scholar 

  • Degreef G, Lantons G, Bogerts B, Ashtari M, Lieberman J. Abnormalities of the septum pellucidum on MR scans in first- episode schizophrenic patients. American Journal of Neuroradiology 1992b; 13:835–840.

    Google Scholar 

  • Deshmukh A, Sullivan EV, Mathalon DH, Desmond JE, Matsumoto B, Lim KO, Pfefferbaum A. Cerebellar volume deficits in schizophrenia (abstract). Biological Psychiatry 1996; 239: 600.

    Article  Google Scholar 

  • Donchin E, Karis D, Bashore T, Coles MGH, Gratton G. Cognitive psychophy- siology and human information processing. In: Coles MGH, Donchin E, Porges SW (Hrsg.). Psychophysiology: Systems, processes, and applications. Guildford Press, New York 1986: 244–267.

    Google Scholar 

  • Elliott R, Sahakian BJ. The neuropsychology of schizophrenia: Relations with clinical and neurobiological dimensions. Psychological Medicine 1995; 25: 581–594.

    Article  Google Scholar 

  • Falkai P, Bogerts B. Cell loss in the hippocampus of schizophrenics. European Archives of Psychiatry and Neurological Science 1986; 236: 154–161.

    Article  Google Scholar 

  • Filteau MJ, Pourcher E, Bouchard RH, Baruch P, Mathieu J, Simard N, Vincent P. Corpus callosum agenesis and psychosis in Andermann syndrome. Archives of Neurology 1991; 48: 1275–1280.

    Article  Google Scholar 

  • Flaum M, Swayze VW, O‘Leary DS, Yuh WT, Ehrhardt JC, Arndt SV, Andreasen NC. Effects of diagnosis, laterality and gender on brain morphology in schizophrenia. American Journal of Psychiatry 1995; 152: 704–714.

    Google Scholar 

  • Forstl H, Sahakian BJ. A psychiatric presentation of abulia - three cases of left frontal lobe ischaemia and atrophy. Journal of the Royal Society of Medicine 1991; 84: 89–91.

    Google Scholar 

  • Fukuzako H, Fukuzako T, Hashiguchi T, Hokazono Y, Takeuchi K, Hirakawa, K, Ueyama K, Takigawa M, Kajiya Y, Nakajo M, Fujimoto T. Reduction in hippocampal formation volume is caused mainly by its shortening in chronic schizophrenia: Assessment by MRI. Biological Psychiatry 1996; 39: 938–945.

    Article  Google Scholar 

  • Galin D. Implications for psychiatry of left and right cerebral specialization. Archives of General Psychiatry 1974; 31: 572–583.

    Article  Google Scholar 

  • Gaser C, Volz HP, Kiebel S, Riehemann S, Sauer H. Detecting structural changes in whole brain based on nonlinear deformation - appUcation to schizophrenia research. Neuroimage 1999; 10: 107–113.

    Article  Google Scholar 

  • Gloor P. Temporal lobe epilepsy: Its possible contribution to the understanding of the functional significance of the amygdala and of its interaction with neocortical-temporal mechanism. In: Eleftheriou BE (Hrsg.). The neurobiology of the amygdala. Plenum Press: New York 1972; 423–457.

    Google Scholar 

  • Gulmann NC, Wildschiotz G, Orbaek K. Alteration of interhemisphere conduction through corpus callosum in chronic schizophrenia. Biological Psychiatry 1982;17: 585–594.

    Google Scholar 

  • Günther W, Petsch R, Steinberg R, Moser E, Streck P, Heller H, Kurtz G, Hippius H. Brain dysfunction during motor activation and corpus callosum alterations in schizophrenia. Measured by cerebral blood flow and magnetic resonance imaging. Biological Psychiatry 1991; 29: 535–555.

    Article  Google Scholar 

  • Gur RE, Mozley PD, Shtasel DL, Cannon TD, Gallacher F, Turetsky B, Grossman R, Gur RC. Clinical subtypes of schizophrenia: Differences in brain and CSF- volume. American Journal of Psychiatry 1994; 151: 343–350.

    Google Scholar 

  • Haug JO. Pneumenzephalographie studies in mental disease. Acta Psychiatrica Scandi- navica 1962; 38: 1–114.

    Article  Google Scholar 

  • Hemsley DR. An experimental psychological model for schizophrenia. In: Häfner H, Gattaz WE, Janzarik W (Hrsg.). Search for the causes of schizophrenia. Springer: Heidelberg 1987a.

    Google Scholar 

  • Hemsley DR. Hallucinations: Unintended or unexpected? Behavioral Brain Science 1987b; 10: 532–533.

    Article  Google Scholar 

  • Hemsley DR. A simple (or simplistic?) cognitive model for schizophrenia. Behaviour Research and Therapy 1993; 31:633–645.

    Article  Google Scholar 

  • Henn FA, Braus DF. Structural neuro- imaging in schizophrenia. An integrative view of neuromorphology. European Archives of Psychiatry and Clinical Neuroscience 1999; 249 (Suppl 4): 48–56.

    Google Scholar 

  • Hounsfield GN. Computerised transverse axial scanning (tomography). Part I. Description of the system. British Journal of Radiology 1973; 46: 1016–1022.

    Article  Google Scholar 

  • Huber G. Pneumenzephalographische und psychopathologische Bilder bei endogenen Psychosen. Springer: Berhn 1957.

    Google Scholar 

  • Jacobi W, Winkler H. Encephalographische Studien an chronisch Schizophrenen. Archiv für Psychiatrie und Nervenkrankheiten 1927; 80: 299–332.

    Article  Google Scholar 

  • Jacobsen LK, Giedd JN, Berquin PC, Krain AL, Hamburger SD, Kumra S, Rapoport JL. Quantitative morphology of the cerebellum and fourth ventricle in childhood-onset schizophrenia. American Journal of Psychiatry 1997; 154: 1663–1669.

    Google Scholar 

  • Jernigan TL, Zisook S, Heaton RK, Mo- ranville JT, Hesselink JR, Braff DL. Magnetic resonance imaging abnormalities in lenticular nuclei and cerebral cortex in schizophrenia. Archives of General Psychiatry 1991; 48: 881–890.

    Article  Google Scholar 

  • Jeste DV, Lohr JB. Hippocampal pathological findings in schizophrenia: A morphometric study. Archives of General Psychiatry 1989; 46: 1019–1024.

    Article  Google Scholar 

  • van Kämmen DP, van Kämmen WB, Peters J, Goetz K, Neylon T. Decreased slow- wave sleep and enlarged ventricles in schizophrenia. Neuropsychopharmacology 1988;1:265–271.

    Google Scholar 

  • Keilp JG, Sweeney JA, Jacobson P, Solomon C, St. Louis L, Deck M, Frances A, Mann JJ. Cognitive impairment in schizophrenia: Specific relations to ventricular size and negative symptomatology. Biological Psychiatry 1988; 24: 47–55.

    Article  Google Scholar 

  • Kelsoe Jr JR, Cadet JL, Picar JL, Weinberger DR. Quantitative neuroanatomy in schizophrenia: a controlled magnetic resonance imaging study. Archives of General Psychiatry 1988; 45: 533–541.

    Article  Google Scholar 

  • Kemali D, May M, Galderisi S. Clinical, biological and neuropsychological features associated with lateral ventricular enlargement in DSM-III schizophrenic disorder. Psychiatry Research 1987; 21: 137–149.

    Article  Google Scholar 

  • Klüver H, Bucy PC. Preliminary analysis of function of the temporal lobe in monkeys. Archives of Neurology and Psychiatry 1939; 42: 979–1000.

    Google Scholar 

  • Kojima H, Yamada S, Nakamura J. Morphological changes of the brain in chronic schizophrenia. In: Takahashi R, Flor-Henri P, Gruzelier J, Niwa S (Hrsg.). Cerebral dynamics, laterality and psychopathology. Elsevier: Amsterdam 1987.

    Google Scholar 

  • Kolakowska T, Williams AO, Ardern M, Beveley M, Jambor K, Gelder MG, Mandelbrote BM. Schizophrenia with good and poor outcome. 1. Early clinical features, response to neuroleptics and signs of organic dysfunction. British Journal of Psychiatry 1985a; 146: 229–246.

    Article  Google Scholar 

  • Kolakowska T, Williams AO, Jambor K, Ardern M. Schizophrenia with good and poor outcome. III. Neurological “soff signs, cognitive impairment and their clinical significance. British Journal of Psychiatry 1985b; 146: 348–357.

    Article  Google Scholar 

  • Kovelman JA, Scheibel AB. A neuro- histological correlate of schizophrenia. Biological Psychiatry 1984; 19: 1601–1621.

    Google Scholar 

  • Laubenberger T, Laubenberger J. Technik der medizinischen Radiologie. Deutscher Ärzte-Veriag: Köln 1994.

    Google Scholar 

  • Lawrie SM, Abukmeil SS. Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. British Journal of Psychiatry 1998; 172: 110–120.

    Article  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS. The underestimated cerebellum. Human Brain Mapping 1995; 2: 244–254.

    Article  Google Scholar 

  • Lemke R. Untersuchungen über die soziale Prognose der Schizophrenie unter besonderer Berücksichtigung des encephalo- graphischen Befundes. Archiv für Psychiatrie und Nervenkrankheiten 1935; 104: 89–136.

    Article  Google Scholar 

  • Lesch A, Bogerts B. The diencephalon in schizophrenia: Evidence for reduced thickness of the periventricular grey matter. European Archives of Psychiatry and Neurological Sciences 1984; 234: 212–219.

    Article  Google Scholar 

  • Lewis SW, Reveley MA, David AS, Ron MA. Agenesis of the corpus callosum and schizophrenia: A case report. Psychological Medicine 1988; 18: 341–347.

    Article  Google Scholar 

  • Lishman AW. Organic Psychiatry. Blackwell Scientific Publications: Oxford 1987.

    Google Scholar 

  • Lissner J. Radiologie I. Enke: Stuttgart 1993.

    Google Scholar 

  • Livingstone KW, Hornykiewicz T (Hrsg.). Limbic mechanisms. Plenum Press: New York 1978.

    Google Scholar 

  • Losonczy MF, Song IS, Mohs RC, Small NA, Davidson M, Johns CA, Davis KL. Correlates of lateral ventricular size in chronic schizophrenia. I. Behavioral and treatment response measures. American Journal of Psychiatry 1986; 143: 976–981.

    Google Scholar 

  • Luchins DJ, Lewine RJ, Meltzer HY. Lateral ventricular size, psychopathology and medical response in the psychoses. Biological Psychiatry 1984; 19: 29–44.

    Google Scholar 

  • Luchins DJ, Meltzer HY. A comparison of CT findings in acute and chronic ward schizophrenics. Psychiatry Research 1986; 17: 7–14.

    Article  Google Scholar 

  • Mac Lean PD. Psychosomatic disease and the “visceral brain”. Recent developments bearing on the Papez theory of emotion. Medicine 1949; 11: 338–353.

    Google Scholar 

  • Mac Lean PD. The triune brain, emotion and scientific bias. In: Intensive study program in the neurosciences. Neuroscience Research Program. Rockefeller University Press: New York, Chapter 1970; 23: 336–346.

    Google Scholar 

  • Macpherson, RI, Holigate RC, Londeman SK. Midline central nervous lipomas in children. Journal of the Canadian Association of Radiologists 1987; 38: 264–270.

    Google Scholar 

  • Maher BA. Anomalous experience and delusional thinking: The logic of explanations. In: Oltman TF, Maher BA (Hrsg.). Delusional beliefs. Wiley: New York 1988.

    Google Scholar 

  • Marks RC, Luchins DJ. Relationship between brain imaging findings in schizophrenia and psychopathology. A review of the literature relating to positive and negative symptoms. In: Andreasen NC (Hrsg.). Schizophrenia: Positive and negative symptoms and syndromes. Modem Problems of Pharmacopsychiatry. Karger: Basel, 1990; Vol 24: 89–123.

    Google Scholar 

  • Mccarley RW, Shenton ME, O’Donnell BF, Nestor PG. Uniting Kraepelin and Bleuler: The psychology of schizophrenia and the biology of temporal lobe abnormalities. Harvard Review of Psychiatry 1993; 1: 36–56.

    Article  Google Scholar 

  • Mccarley RW, Wible CG, Frumin M, Hirayasu Y, Levitt JJ, Fischer A, Shenton ME. MRI anatomy of schizophrenia. Biological Psychiatry 1999; 45: 1099–1119.

    Article  Google Scholar 

  • Mesulam MM. Patterns in behavioral neuroanatomy: Association areas, the limbic system, and hemispheric specialization. In: Mesulam MM (Hrsg.). Principles of behavioral neurology. Davis: Philadelphia 1986: 1–70.

    Google Scholar 

  • Mozley PD, Gur RE, Resnick SM, Shtasel DL, Richard J, Kohn M, Grossman R, Herman G, Gur RC. Magnetic resonance imaging in schizophrenia: Relationship with cHnical measures. Schizophrenia Research 1994; 12: 195–203.

    Article  Google Scholar 

  • Miller R. Schizophrenia as a progressive disorder: Relations to EEG, CT, neuro- pathological and other evidence. Progress in Neurobiology 1989; 33: 17–44.

    Article  Google Scholar 

  • Mussgay L, Hertwig R. Signal detection indices in schizophrenics on a visual, auditory, and bimodal continuous performance test. Schizophrenia Research 1990; 3: 303–310.

    Article  Google Scholar 

  • Nasrallah HA, Kuperman S, Jacoby CG, Mc Calley-Whitters M, Hamara B. Clinical correlates of sulcal widening in chronic schizophrenia. Psychiatry Research 1983; 10: 237–242.

    Article  Google Scholar 

  • Netter FH. Atlas der Anatomie des Menschen. Thieme: Basel 1995.

    Google Scholar 

  • Nicholi AM (Hrsg.). The Harvard guide to modern psychiatry. The Belknap Press of Harvard. University Press: Cambridge 1978.

    Google Scholar 

  • Nieuwenhuys R, Voogd J, van Hujzen C. The human central nervous system. Springer: New York, Berlin 1981.

    Google Scholar 

  • Nieuwenhuys R. Chemoarchitecture of the brain. Springer: New York, Berlin 1985.

    Book  Google Scholar 

  • Ojemann GA. Cortical organization of language. Journal of Neuroscience 1991; 11:2281–2287.

    Google Scholar 

  • Olton DS, Wible CG, Shapiro ML. Mnemonic theories of hippocampal function. Behavioral Neuroscience 1986; 100: 852–855.

    Article  Google Scholar 

  • Orrell MW, Sahakian BJ. Dementia of the frontal lobe type. Psychological Medicine 1991;21:553–556.

    Article  Google Scholar 

  • Ota T, Maeshiro H, Ishido H, Shimizu Y, Uchida R, Toyo shima R, Oshima H, Tokazawa A, Motomura H, Noguchi T (1987a) Treatment-resistant chronic psychopathology and CT scans in schizophrenia. Acta Psychiatrica Scandinavica 75, 415–427.

    Google Scholar 

  • Ota T, Toyoshima R, Motomura H. Biological heterogeneity of schizophrenia: Morphological and psychophysiological evidence. In: Takahashi R, Flor-Henry P, Gruzelier J, Niwa S (Hrsg.) Cerebral dynamics, laterality and psychopathology. Elsevier: Amsterdam 1987b.

    Google Scholar 

  • Owens DCG, Johnstone EC, Crow TJ, Frith CD, Jagoe JR, Kreel L. Lateral ventricular size in schizophrenia: Relationship to the disease process and its clinical manifestations. Psychological Medicine 1985; 15: 27–41.

    Article  Google Scholar 

  • Pakkenberg B. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenia. Archives of General Psychiatry 1990; 47: 1023–1028.

    Article  Google Scholar 

  • Pandurangi A, Dewan M, Boucher M, Levy B, Ramchandran T, Bartell K, Bick PA, Phelps BH, Mayor L. A comprehensive study of chronic schizophrenic patients. II. Biological, neuropsychological, and clinical correlates of CT abnormaUty. Acta Psychiatrica Scandinavica 1986; 73:161–171.

    Article  Google Scholar 

  • Pearlson GD, Veroff AE. Computerized tomographic scan changes in manic depressive illness. Lancet, ii, 1981: 470.

    Google Scholar 

  • Pearlson GD, Garbacz DJ, Breakey W, Ahn HS, De Paulo JR. Lateral ventricular enlargement associated with persistent unemployment and negative symptoms in both schizophrenia and bipolar disorder. Psychiatry Research 1984; 12: 1–9.

    Article  Google Scholar 

  • Pearlson GD, Garbacz DJ, Moberg PJ, Ahn HS, De Paulo JR. Symptomatic, familiar, perinatal, and social correlates of computerized axial tomography (CAT) changes in schizophrenics and bipolars. Journal ofNervous and Mental Disease 1985:173: 42–50.

    Article  Google Scholar 

  • Penfield W, Perot P. The brain’s record of auditory and visual experience: A final summary and discussion. Brain 1963; 86: 596–695.

    Article  Google Scholar 

  • Portas CM, Goldstein JM, Shenton ME, Hokama HH, Wible CG, Fischer I. Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging. Biological Psychiatry 1998; 43: 649–659.

    Article  Google Scholar 

  • Raine A, Harrison GN, Reynolds GP, Sheard C, Cooper JE, Medley I. Structural and functional characteristics of the corpus callosum in schizophrenics, psychiatric controls, and normal controls. Archives of General Psychiatry 1990; 47: 1060-1064.

    Article  Google Scholar 

  • Raine A, Lencz T, Reynolds GP, Harrison GN, Sheard C, Medley I, Reynolds LM, Cooper JE. An evaluation of structural and functional prefrontal deficits in schizophrenia. MRI and neuropsychological measures. Psychiatry Research 1992; 45: 123–137.

    Article  Google Scholar 

  • Rakic P, Yakovlev PI. Development of the corpus callosum and cavum septi in man. Journal of Comparative Neurology 1986; 132: 45–72.

    Article  Google Scholar 

  • Roberts GW. Schizophrenia: A neuro- pathological perspective. British Journal of Psychiatry 1991; 158: 8–17.

    Article  Google Scholar 

  • Ron MA, Acker W, Shaw GK, Lishman WA. Computerized tomography of the brain in chronic alcoholism. Brain 1982; 105:497–514.

    Article  Google Scholar 

  • Rosene DL, van Hoesen GW. The hippocampal formation of the primate brain: a review of some comparative aspects of cytoarchitecture and connections. In: Jones EG, Peters A (Hrsg.). Cerebral cortex. Plenum Publishers: New York, vol 6, 1987.

    Google Scholar 

  • Rosenthal R, Bigelow LB. Quantitative brain measurements in chronic schizophrenia. British Journal of Psychiatry 1972:21:259–264.

    Article  Google Scholar 

  • Rossi A, Stratta P, Mancini F, De Catalog S, Casacchia M. Cerebellar vermal size in schizophrenia: a male effect. Biological Psychiatry 1993; 33: 354–357.

    Article  Google Scholar 

  • Saunders RC, Rosene DL, van Hoesen GW. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey, II: reciprocal and non-reciprocal connections. Joumal of Comparative Neurology 1988; 271: 185–207.

    Article  Google Scholar 

  • Saykin AJ, Gur RL, Gur RE, Mozley PE, Mozley LH, Resnick SM, Kester DB, Stafiniak p. Neuropsychological function in schizophrenia: Selective impairment in memory and learning. Archives of General Psychiatry 1991; 48: 618–624.

    Article  Google Scholar 

  • Schröder J, Geider FJ, Binkert M, Reitz C, Jauss M, Sauer H. Subsyndromes in chronic schizophrenia: Do their psycho- pathological characteristics correspond to cerebral alterations? Psychiatry Research 1992; 42: 209–220.

    Article  Google Scholar 

  • Schröder J, Buchsbaum MS, Siegel BV, Geider FJ, Niethammer R. Structural and functional correlates of subsyndromes in chronic schizophrenia. Psychopathology 1995; 28: 38–45.

    Article  Google Scholar 

  • Shelton RC, Weinberger DR. X-ray computed tomography studies in schizophrenia: A review and synthesis. In: Nasrallah HA, Weinberger DR (Hrsg.). The neurology of schizophrenia. Elsevier: Amsterdam 1986: 207–250.

    Google Scholar 

  • Shenton ME, Kikinis R, Jolesz FA, Pollack SD, Le May M, Wible CG, Hokama H, Martin J, Metcalf D, Coleman M, Mac Carley RW. Abnormalities of the left temporal lobe and thought disorder in schizophrenia: A quantitative magnetic resonance imaging study. New England Joumal of Medicine 1992; 327: 604–612.

    Article  Google Scholar 

  • Shtasel D, Saykin AJ, Gur RE, Kester DB, Harper-Mozley LM, Gur RC. Neuropsychology in first episode schizophrenia. American Psychiatric New Research Abstracts 1992; 154.

    Google Scholar 

  • Sims A. Symptoms in the mind. Balliiere Tindall: London 1992.

    Google Scholar 

  • Smith RC, Baumgartner R, Calderón M. Magnetic resonance imaging of brains of schizophrenic patients. Psychiatry Research 1987; 20: 33–46.

    Article  Google Scholar 

  • Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science 1991; 253: 1380–1386.

    Article  Google Scholar 

  • St. Clair D. Expanded CAG trinucleotide repeat of Huntington’s disease gene in a patient with schizophrenia and normal striatal histology [letter]. Journal of Medical Genetics 1994; 31: 658–659.

    Article  Google Scholar 

  • Stratta P, Rossi A, Gallucci M, Amicarelli I, Passariello R, Casacchia M. Hemispheric asymmetries and schizophrenia: a preliminary magnetic resonance imag- ing study. Biological Psychiatry 1989; 25: 275–284.

    Article  Google Scholar 

  • Stuss DT, Benson DF. Emotional concomitants of psychosurgery. In: Heilman KM, Satz P (Hrsg.). Neuropsychology of human emotions. Guildford Press: London 1983:111–140.

    Google Scholar 

  • Suddath RL, Cassanova MF, Goldberg TE, Daniel DG, Kelsoe JR, Weinberger DR. Temporal lobe pathology in schizophrenia: a quantitative magnetic resonance imaging study. American Journal of Psychiatry 1989; 146: 464–472.

    Google Scholar 

  • Swanson LW. The hippocampus and the concept of limbic system. In: Seifert W (Hrsg.). Neurobiology of the hippocampus. Academic Press, London 1983: 3–19.

    Google Scholar 

  • Swayze VW, Andreasen NC, Erhardt JC, Yuh WTC, Alliger RJ, Cohen GA. Developmental abnormalities of the corpus callosum in schizophrenia. Archives of Neurology 1990; 47: 805–808.

    Article  Google Scholar 

  • Uematsu M, Kaiya H. Midsagittal cortical pathomorphology of schizophrenia: A magnetic resonance imaging study. Psychiatry Research 1989; 30: 11–20.

    Article  Google Scholar 

  • Velek M, White LE, Williams JP, Stafford RL, Marco LA. Psychosis in a case of corpus callosum agenesis. Alabama Medicine 1988; 58: 27–29.

    Google Scholar 

Literatur

  • Andreasen NC, Rezai K, Alliger R, Swazey YW, Flaum M, Kirschner P, Cohen G, O’Leary DS. Hypofrontality in neuro- leptic-naive patients and in patients with chronic schizophrenia. Archives of General Psychiatry 1992; 49: 943–958.

    Article  Google Scholar 

  • Cleghorn J, Garnett E, Nahmias C, Firnau G, Brown G, Kaplan R, Szechtman H, Szechtman B. Inceased frontal and reduced parietal glucose metabohsm in acute untreated schizophrenia. Psychiatry Research 1989; 28: 119–133.

    Article  Google Scholar 

  • Cleghorn JM, Franco S, Szechtman B, Kaplan RD, Szechtman H, Brown GM, Nahmias C, Garnett ES. Towards a brain map of auditory hallucinations. American Journal of Psychiatry 1992; 149: 1062–1069.

    Google Scholar 

  • De Lisi LE, Buchsbaum MS. PET and cerebral glucose use in psychiatric patients. In: Trimble MR (Hrsg.). New brain imaging techniques in psychopharma- cology. Oxford University Press: Oxford 1986; 48–62.

    Google Scholar 

  • De Lisi L, Buchsbaum MS, Holcomb H, Langston KG. King AC, Kessler R, Picar D, Carpenter WT Jr, Moihisa JM, Margolin R et al. Increased temporal lobe glucose use in chronic schizophrenic patients. Biological Psychiatry 1989; 25: 835–851.

    Article  Google Scholar 

  • Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Laneermann H, Singer W. Activation of Heschl’s gyrus during auditory hallucinations. Neuron 1999; 22:615–621.

    Article  Google Scholar 

  • Early T, Reiman E, Raichle ME, Spitznagel EL. Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proceedings of the National Academy of Science of the United States of America 1987; 84: 561–563.

    Article  Google Scholar 

  • Ebmeier KP. Brain imaging and schizophrenia. In: Den Boer JA, Westenberg HGM, van Praag HM (Hrsg.). Advances in the neurobiology of schizophrenia. Wiley, Chichester 1995; 131–155.

    Google Scholar 

  • Frith CD. The positive and negative symptoms of schizophrenia reflect impairments in the perception and initiation of action. Psychological Medicine 1987; 17:631–648.

    Article  Google Scholar 

  • Gur RE. Regional brain abnormalities in schizophrenia. International Symposium on Cerebral Dynamics, Laterality and Psychopathology, Abstract V-7, Hakone, Japan 1986.

    Google Scholar 

  • Gur RE, Resnick SM, Alavi A, Gur RC, Caroff S, Dann R, Silver F, Saykin AJ, Chawluck JB, Kushner M, Reivich M. Regional brain function in schizophrenia: 1. A positron emission tomography study. Archives of General Psychiatry 1987a; 44:119–125.

    Article  Google Scholar 

  • Gur RE, Resnick SM, Gur RC, Alavi A, Caroff S, Kushner M, Reivich M. Regional brain function in schizophrenia: II. Repeated evaluation with positron emission tomography. Archives of General Psychiatry 1987b; 44: 126–129.

    Article  Google Scholar 

  • Hoffman RE, Dobscha SK. Cortical pruning and the development of schizophrenia: a computer model. Schizophrenia Bulletin 1989; 15: 477–490.

    Google Scholar 

  • Ingvar DH, Franzen G. Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica 1974; 50: 425–464.

    Article  Google Scholar 

  • Liddle PF, Friston K, Frith CD, Hirsch SR, Jones T, Frackowiak. Patterns of cerebral blood flow in schizophrenia. British Journal of Psychiatry 1992; 160: 179–186.

    Article  Google Scholar 

  • Mcguire PK, Shah GMS, Murray RM. Increased blood flow in Brocas area during auditory hallucinations in schizophrenia. Lancet 1993; 342: 703–706.

    Article  Google Scholar 

  • Mentzel HJ, Gaser C, Volz HP, Rzanny R, Häger F, Sauer H, Kaiser WA. Cognitive stimulation by using the Wisconsin Card Sorting Test: a functional magnetic resonance imaging study at 1.5 Tesla. Radiology 1998; 207: 399–404.

    Google Scholar 

  • Nelson HE, Pantelis C, Carruthers K, Speller J, Baxendale S, Barnes TRE. Cognitive functioning and symptomatology in chronic schizophrenia. Psychological Medicine 1990; 20: 357–365.

    Article  Google Scholar 

  • Pantelis C, Barnes TRE, Nelson HE. Is the concept of fronto-subcortical dementia relevant to schizophrenia? British Joumal of Psychiatry 1992; 160: 442–460.

    Article  Google Scholar 

  • Robbins TW. The case for frontostriatal dysfunction in schizophrenia. Schizophrenia Bulletin 1990; 16: 391–402.

    Google Scholar 

  • Schröder J, Buchsbaum MS, Siegel BV, Geider FJ, Niethammer R. Structural and functional correlates of subsyndromes in chronic schizophrenia. Psychopathology 1995; 28: 38–45.

    Article  Google Scholar 

  • Sheppard G, Gruzelier J, Manchanda R, Hirsch SR, Wise R, Frackowiak R, Jones T. 15O positron emission tomographic scanning in predominantly never- treated acute schizophrenic patients. Lancet 1983; 1: 1448–1552.

    Article  Google Scholar 

  • Szechtman H Nahmias C, Garnett ES, Firnau G. Effect of neuroleptics on altered cerebral glucose metabolism in schizophrenia. Archives of General Psychiatry 1988;45:523–541.

    Article  Google Scholar 

  • Volkow ND, Brodie JD, Wolf AP, Gomez- Mont F, Canaro R, Van Gelder P, Russel JA, Overall J. Brain organization in schizophrenia. Joumal of Cerebral Blood Flow and Metabohsm 1986; 6: 441–446.

    Article  Google Scholar 

  • Volz HP, Gaser C, Häger F, Rzanny R, Mentzel H, Kaiser WA, Sauer H. Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test. A functional MRI study on healthy volunteers and schizophrenics. Psychiatry Research Neuroimaging 1997; 75: 145–157.

    Google Scholar 

  • Volz HP, Gaser C, Häger F, Rzanny R, Pönisc HJ, Mentzel HJ, Kaiser WA, Sauer H. Decreased frontal activation in schizophrenics during stimulation with the Continuous Performance Test - a functional magnetic resonance study. European Psychiatry 1999; 14: 17–24.

    Article  Google Scholar 

  • Wolkin A, Jaeger J, Brodie JD, Wolf AP, Fowler J, Rotrosen J, Gomez-Mont F, Cancro R. Persistence of cerebral meta- bohc abnormalities in chronic schizophrenia determined by positron emission tomography. American Journal of Psychiatry 1986; 142: 564–571.

    Google Scholar 

  • Wolkin A, Sanfilipo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J. Negative symptoms and hypofrontality in chronic schizophrenia. Archives of General Psychiatry 1992; 49: 959–965.

    Article  Google Scholar 

  • Volz HP, Gaser C, Sauer H. Supporting evidence for the model of cognitive dysmetria in schizophrenia - a structural magnetic resonance imaging study using deformation based morphometry. Schizophrenia Research, im Druck 2000a.

    Google Scholar 

  • Volz Hp, Gaser C, Sommer M, Sauer H. Brain structure and negative symptoms in schizophrenia. Psychiatry Research: Neu- roimaging, eingereicht 2000b.

    Google Scholar 

  • Weinberger DR, Bigelow LB, Kleinman JE, Klein ST, Rosenblatt JE, Wyatt RJ. Cerebral ventricular enlargement in chronic schizophrenia: An association with poor response to treatment. Archives of General Psychiatry 1980; 37: 11–13.

    Article  Google Scholar 

  • Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 1987; 44: 660–669.

    Article  Google Scholar 

  • Wexler BD, Henninger GR. Alterations in cerebral alterality during acute psychotic illness. Archives of General Psychiatry 1979; 36: 278–284.

    Article  Google Scholar 

  • Wible CG, Shenton ME, Mccarley RW. Do positive symptoms in schizophrenia result from abnormalities of functionally linked temporal lobe structures? A new theory. Biological Psychiatry 1992; 31: 61A-252A.

    Google Scholar 

  • Wible CG, Shenton ME, Hokama H, Kikinis R, Jolesz FA, Metcalf D, Mccarley RW. Prefrontal cortex and schizophrenia: A quantitative magnetic resonance imaging study. Archives of General Psychiatry 1995; 52: 279–288.

    Article  Google Scholar 

  • Williams AO, Reveley MA, Kolokowska T, Ardern M, Mandelbrote BM. Schizophrenia with good and poor outcome. II. Cerebral ventricular size and its clinical significance. British Journal of Psychiatry 1985; 146: 239–246.

    Article  Google Scholar 

  • Williamson P, Pelz D, Merskey H, Morrison C, Conlon P. Correlation of negative symptoms in schizophrenia with frontal lobe parameters on magnetic resonance imaging. British Journal of Psychiatry 1991; 159: 130–134.

    Article  Google Scholar 

  • Young AH, Blackwood DHR, Roxborough H, Mc Queen JK, Martin MJ, Kean D. A magnetic resonance imaging study of schizophrenia: Brain structure and clinical symptoms. British Journal of Psychiatry 1991; 158: 158–164.

    Google Scholar 

  • Zipursky RB, Lim KO, Sullivan EV, Brown BW, Pfefferbaum A. Widespread cerebral grey matter volume deficits in schizophrenia. Archives of General Psychiatry 1992; 49: 195–205.

    Article  Google Scholar 

  • Zipursky RB, Marsh L, Lim KO, De Ment S, Shear PK, Sullivan EV, Murphy GM, Csernansky JG, Pfefferbaum A. Volumetrie MRI assessments of temporal lobe structures in schizophrenia. Biological Psychiatry 1994; 35: 501–516.

    Article  Google Scholar 

Download references

Authors

Editor information

Hans-Jürgen Möller Siegfried Kasper

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Deutscher Universitäts-Verlag GmbH, Wiesbaden

About this chapter

Cite this chapter

Höse, A., Volz, HP. (2000). Ursachen schizophrener Kognitionsstörungen. In: Möller, HJ., Kasper, S. (eds) Die Rolle der Kognition in der Therapie Schizophrener Störungen. Deutscher Universitätsverlag. https://doi.org/10.1007/978-3-322-83446-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-83446-1_4

  • Publisher Name: Deutscher Universitätsverlag

  • Print ISBN: 978-3-8244-2146-6

  • Online ISBN: 978-3-322-83446-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics