Advertisement

Integration komplexer Funktionen. Integralsätze

  • Andreas Herz

Zusammenfassung

Der erste Paragraph befasst sich mit den verschiedenen Integralbegriffen in der Funktionentheorie. Der Definition des Integrals komplexwertiger Funktionen über reelle beschränkte Intervalle folgt die Besprechung von Eigenschaften und Auswertungsmöglichkeiten. Inhalt des zweiten Teils dieses Paragraphen ist dann die Integration über allgemeine Wege der komplexen Zahlenebene. Die Definition reeller Wegintegrale schließt den ersten Paragraphen ab. Zentrale Begriffe des zweiten Paragraphen sind Stammfunktion und Integrabilität holomorpher Funktionen. Es wird besonders auf die Beziehung zwischen Holomorphie und Integrabilität eingegangen. Diese steht auch im Zentrum des dritten Paragraphen. Mit Hilfe der Indexfunktion und des Begriffs des nullhomologen Wegs wird hier der Cauchysche Integralsatz und die Cauchysche Integralformel in großer Allgemeinheit formuliert. Den Abschluss dieses Paragraphen bilden einige wichtige Folgerungen und weitere Versionen der Integralsätze, die einen großen Anwendungsbereich besitzen. Im letzten Paragraphen werden die Parameterintegrale im Komplexen mit den bekannten reellen Parameterintegralen verglichen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wiesbaden 2003

Authors and Affiliations

  • Andreas Herz
    • 1
  1. 1.KemptenDeutschland

Personalised recommendations