Skip to main content

Enantiomers and Separation

  • Chapter
  • 174 Accesses

Part of the book series: Chromatographia CE Series ((CHROM,volume 6))

Abstract

Symmetry exists in many guises and forms in the natural world and has profound significance to our lives. The concept of symmetry has a broad appeal and so is applied to what we perceive with our senses and right down to the sub atomic level. The Tiger for example has a plane of reflectional symmetry running down the centre of her nose which bisects her body. An additional feature of interest for the chemist is that the symmetry of the Tiger is passed onto her cubs and so conserved through the generations.

Tyger! Tyger! burning bright In the forest of the night, What immortal hand or eye Could frame thy fearful symmetry? William Blake (1757-1827)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cahn, R.S.; Ingold, C.; Prelog, V. Specification of Molecular Chirality, Angeo. Chem. Internat. Edit. 1966, 5, 385–415.

    Article  Google Scholar 

  2. Bijvoet, J.M.; Peerdeman, A.F.; van Born-met, A.J. Determination of the absolute configuration of optically active compounds by means of X-rays, Nature 1951, 168, 271–272.

    Article  Google Scholar 

  3. Wilson, A.G.; Brooke, O.G.; Lloyd, H.J.; Robinson, B.F. Mechanism of action of ßAdrenergic Receptor Blocking Agents in Angina Pectoris: Comparison of Action of Propranolol with Dexpropranolol and Practolol, Br. Med. J. 1969, 4, 399–401.

    Article  Google Scholar 

  4. Ariens, E.J. Stereochemistry, a Basis for Sophisticated Nonsense in Pharmacokinetics and Clinical Pharmacology, Ear. J. Clin. Pharmacol. 1984, 26, 663–668.

    Article  Google Scholar 

  5. De Camp, W.H. The FDA Perspective on the Development of Stereoisomers, Chirality 1989, 1, 2–6.

    Article  Google Scholar 

  6. Knoche, B.; Blaschke, G. Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography, J. Chromatogr. A 1994, 666, 235240.

    Google Scholar 

  7. Caldwell, J.; Hutt, A.J.; Fournel-Gigleux, S. The metabolic chiral inversion and dis-positional enantioselectivity of the 2-arylpropionic acids and their biological consequences, Biochem. Pharmacol. 1988, 37, 105–114.

    Article  Google Scholar 

  8. Tracy, T.S.; Hall, S.D. Metabolic inversion of (R) Ibuprofen, Epimerization and hydrolysis of ibuprofenyl-coenzyme A, Drug Metab. Dispos. 1992, 20, 322–327.

    Google Scholar 

  9. Drummond, L.; Caldwell, J.; Wilson, H.K. The stereoselectivity of 1,2-phenylethanediol and mandelic acid metabolism and disposition in the rat, Xenobiotica 1990, 20, 159–168.

    Article  Google Scholar 

  10. Testa, B. Mechanisms of Chiral Recognition in Xenobiotic Metabolism and Drug-Receptor Interactions, Chirality 1989, 1, 7–9.

    Article  Google Scholar 

  11. De Camp, W.H. Chiral drugs: the FDA perspective on manufacturing and con-trol, J. Pharm. Rimed. Anal 1993, II, 1167–1172.

    Article  Google Scholar 

  12. Collins, A.N.; Sheldrake, G.N.; Crosby, J. (eds.), in Chirality in Industry II. Developments in the Manufacture and Applications of Optically Active Compounds, J. Wiley & Sons, New York, 1997.

    Google Scholar 

  13. Sheldon, R.A. Chirotechnology: Industrial Synthesis of Optically Active Compounds, Marcel Dekker, New York, 1993.

    Google Scholar 

  14. Mazoit, J.X.; Boïco, O.; Samii, K. Myocardial Uptake of Bupivacaine: II. Pharmacokinetics and Pharmacodynamics of Bupivacaine Enantiomers in the Isolated Perfused Rabbit Heart. Anesth. Analg. 1993, 77, 477–482.

    Google Scholar 

  15. Cox, C.R.; Checketts, M.R.; Mackenzie, N.; Scott, N.B.; Bannister, J. Comparison of S(—)-bupivacaine with racemic (RS)-bupivacaine in supraclavicular brachial plexus block. Br. J. Anaesth. 1998, 80, 594–598.

    Article  Google Scholar 

  16. Kurihara, N.; Miyamoto, J.; Paulson, G.D.; Zeeh, B.; Skidmore, M.W.; Hollingworth, R,M.; Kuiper, H.A. IUPAC Reports on Pesticides (37), Chirality in synthetic agrochemicals: bioactivity and safety consideration. Pure & Appl. Cheer. 1997, 69, No. 9, 2007–2025.

    Google Scholar 

  17. Jung, M.; Mayer, S.; Schurig, V. Enantiomer Separation by GC, SFC, and CE on immobilized Polysiloxane-Bonded Cyclodextrins, LC-GC Int 1994, 7, 340–347.

    Google Scholar 

  18. fljertén, S. Free zone electroporesis, Chromatogr. Rev. 1967, 9, 122–219.

    Google Scholar 

  19. Verheggen, Th. P.E.M.; Mikkers, F.E.P.; Everaerts, F.M. Isotachophoresis in narrow-bore tubes. Influence of the diameter of the separation compartment, J. Chromatogr. 1977, 132, 205–215.

    Article  Google Scholar 

  20. Mikkers, F.E.P.; Everaerts, F.M.; Verheggen, Th. P.E.M. High performance zone electrophoresis, J. Chromatogr. 1979, 169, 1–20.

    Article  Google Scholar 

  21. Mikkers, F.E.P; Everaerts, F.M.; Verheggen, Th. P.E.M. Concentration distributions in free zone electrophoresis, J. Chro-matogr. 1979, 169, 1–10.

    Article  Google Scholar 

  22. Jorgenson, J.W.; Lukacs, K.D. Zone Electrophoresis in Open Tubular Glass Capillaries, Anal. Chem. 1981, 53, 1298–1302.

    Google Scholar 

  23. Jorgenson, J.W.; Lukacs, K.D. High-resolution separations, based upon electrophoresis and electroosmosis, J. Chromatogr. 1981, 218, 209–216.

    Article  Google Scholar 

  24. Jorgenson, J.W.; Lukacs, K.D. Free-Zone Electrophoresis in Glass Capillaries, Clin. Chem. 1981, 27, 1551–1553.

    Google Scholar 

  25. Jorgenson, J.W.; Lukacs, K.D. Zone Electrophoresis in Open-Tubular Glass Capillaries: Preliminary Data on Performance, J. H. R C. & CC. 1981, 4, 230–231.

    Article  Google Scholar 

  26. Jorgenson, J.W.; Lukacs, K.D. Capillary Zone Electrophoresis, Science 1983, 222, 266–272.

    Article  Google Scholar 

  27. Gassman, E.; Kuo, J.E.; Zare, R.N. Electrokinetic Separation of Chiral Compounds, Science 1985, 230, 813–814.

    Article  Google Scholar 

  28. Gozel, P.; Gassman, E.; Michelsen, H.; Zare, R.N. Electrokinetic Resolution of Amino Acid Enantiomers with Copper (1I)-Aspartame Support Electrolyte, Anal. Chem. 1987, 59, 44–49.

    Google Scholar 

  29. Terabe, S.; Ozaki, H.; Otsuka, K.; Ando, T. Electrokinetic chromatography with 2O-carboxymethyl-13-cyclodextrin as a moving `stationary’ phase, J. Chromatogr. 1985, 332, 211–217.

    Article  Google Scholar 

  30. Guttman, A.; Paulus, A.; Cohen, A.S.; Grinberg, N.; Karger, B.L. Use of complexing agents for selective separation in high-performance capillary electrophoresis Chiral resolution via eyclodextrins incorporated within polyacrylamide gel columns, J. Chromatogr. 1988, 448, 41— 53. -

    Google Scholar 

  31. Fanali, S. Separation of optical isomers by capillary zone electrophoresis based on host-guest complexation with cyclodextrins, J. Chromatogr. 1989, 474, 441–446.

    Article  Google Scholar 

  32. Fanali, S.; Bocek, P. Enantiomeric resolution by using capillary zone electrophoresis: Resolution of racemic tryptophan and determination of the enantiomer composition of pharmaceutical epinephrine, Electrophoresis 1990, 11, 757–760.

    Article  Google Scholar 

  33. Fanali, S. Use of cyclodextrins in capillary zone electrophoresis Resolution of terbutaline and propranolol enantiomers, J. Chromatogr. 1991, 545, 437–444.

    Article  Google Scholar 

  34. Snopek, J.; Soini, H.; Novotny, M.; Smolkova-Keulemansova, E.; Jelinek, I. Selected applications of cyclodextrin selectors in capillary electrophoresis, J. Chromatogr. 1991, 559, 215–222.

    Article  Google Scholar 

  35. Terabe, S.; Shibata, M.; Miyashita, Y. Chiral separation by electrokinetic chromatography wills bile salt micelles, J. Chromatogr. 1989, 480, 403–411.

    Article  Google Scholar 

  36. Cole, R.O.; Sepaniak, M.J.; Hinze, W.L. Optimization of binaphthyl enantiomer separations by capillary zone electrophoresis using mobile phases containing bile salts and organic solvent, J.N.R. C. & C.C. 1990, 13, 579–582.

    Google Scholar 

  37. Dobashi, A.; Ono, T.: Hara, S; Yamaguchi, J. Optical resolution of enantiomers with chiral mixed micelles by electrokinetic chromatography, Anal. Cherry. 1989, 61, 1984–1986.

    Google Scholar 

  38. Nishi, H.; Fukuyama, T.; Terabe, S. Chiral separation by cyclodextrin-modified micellar electrokinetic chromatography, J. Chromatogr. 1991, 553, 503–516.

    Article  Google Scholar 

  39. Ueda, T.; Kitamura, F.; Mitchell, R; Metcalf, T.; Kuwana, T.; Nakamoto, A. Chiral separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection, Anal. Chem. 1991, 63, 2979–2981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Wren, S. et al. (2001). Enantiomers and Separation. In: Berger, T.A., et al. The Separation of Enantiomers by Capillary Electrophoresis. Chromatographia CE Series, vol 6. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-83141-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-83141-5_1

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-83143-9

  • Online ISBN: 978-3-322-83141-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics