Advertisement

Über das Zeichnen von Graphen

  • Ulrik Brandes
  • Dorothea Wagner

Zusammenfassung

Zeichnungen sind nicht nur ein ansprechendes, sondern auch ein sehr effektives Mittel, um die durch einen Graphen repräsentierte Information zu vermitteln. Der geeignete Entwurf solcher Zeichnungen ist jedoch schon bei kleinen Graphen eine schwierige und zeitraubende Arbeit, die nach Automatisierung geradezu ruft. Wir leiten daher eine Formalisierung des Problems her und stellen anhand von Anwendungen aus der Soziologie und dem Verkehrswesen Möglichkeiten des automatischen Zeichnens dar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    E. H. L. Aarts und J. H. M. Korst. Simulated Annealing and Boltzmann Machines. Wiley, 1989.Google Scholar
  2. [2]
    S. D. Berkowitz. An Introduction to Structural Analysis: The Network Approach to Scocial Research. Butterworths, 1982.Google Scholar
  3. [3]
    J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B, 48(3):259–302, 1986.MathSciNetzbMATHGoogle Scholar
  4. [4]
    F. J. Brandenburg (ed.). Proceedings of the 3rd International Symposium on Graph Drawing (GD’ 95), Lecture Notes in Computer Science, Nr. 1027. Springer, 1996.Google Scholar
  5. [5]
    F. J. Brandenburg, M. Himsolt und C. Rohrer. An experimental comparison of force-directed and randomized graph drawing algorithms. In [4], Seiten 76-87.Google Scholar
  6. [6]
    U. Brandes, P. Kenis, J. Raab, V. Schneider und D. Wagner. Explorations into the visualization of policy networks. Erscheint in Journal of Theoretical Politics, 11(1), 1999.Google Scholar
  7. [7]
    U. Brandes und D. Wagner. A Bayesian paradigm for dynamic graph layout. In [16], Seiten 236-247.Google Scholar
  8. [8]
    U. Brandes und D. Wagner. Random field models for graph layout. Konstanzer Schriften in Mathematik und Informatik, Nr. 33. Universität Konstanz, April 1997.Google Scholar
  9. [9]
    U. Brandes und D. Wagner. Dynamic grid embedding with few bends and changes. In K.-Y. Chwa und O. H. Ibarra (eds.), Proceedings of the 9th Annual International Symposium on Algorithms and Computation (ISAAC’ 98), Lecture Notes in Computer Science, Nr. 1533, Seiten 89-98. Springer, 1998.Google Scholar
  10. [10]
    U. Brandes und D. Wagner. Using graph layout to visualize train interconnection data. Erscheint in [47].Google Scholar
  11. [11]
    G. R. Brightwell und E. R. Scheinerman. Representations of planar graphs. SIAM Journal on Discrete Mathematics, 6(2):214–229, Mai 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    I. Bruß und A. Frick. Fast interactive 3-D graph visualization. In [4], Seiten 99-110.Google Scholar
  13. [13]
    R. S. Burt. Toward a Structural Theory of Action: Network Models of Social Structure, Perception, and Action. Academic Press, 1982.Google Scholar
  14. [14]
    I. F. Cruz und J. P. Twarog. 3D graph drawing with simulated annealing. In [4], Seiten 162-165.Google Scholar
  15. [15]
    R. Davidson und D. Harel. Drawing graphs nicely using simulated annealing. ACM Transactions on Graphics, 15(4):301–331, 1996.CrossRefGoogle Scholar
  16. [16]
    G. Di Battista (ed.). Proceedings of the 5th International Symposium on Graph Drawing (GD’ 97), Lecture Notes in Computer Science, Nr. 1353. Springer, 1997.Google Scholar
  17. [17]
    G. Di Battista, P. Eades, H. de Fraysseix, P. Rosenstiehl und R. Tamassia, (eds.). Proceedings of the ALCOM International Workshop on Graph Drawing (GD’ 93), 1993. ftp.cs.brown.edu/pub/gd94/gd-92-93/gd93-v2.ps.Z.Google Scholar
  18. [18]
    G. Di Battista, P. Eades, R. Tamassia und I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.Google Scholar
  19. [19]
    P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.MathSciNetGoogle Scholar
  20. [20]
    P. Eades, J. Marks und S. C. North. Graph-drawing contest report. In [16], Seiten 438-445.Google Scholar
  21. [21]
    C. J. Fisk, D. L. Caskey und L. E. West. ACCEL: Automated circuit card etching layout. Proceedings of the IEEE, 55(11):1971–1982, November 1967.CrossRefGoogle Scholar
  22. [22]
    L. C. Freeman. Centrality in social networks: Conceptual clarification. Social Networks, 1:215–239,1979.CrossRefGoogle Scholar
  23. [23]
    A. Frick, A. Ludwig und H. Mehldau. A fast adaptive layout algorithm for undirected graphs. In [40], Seiten 388-403.Google Scholar
  24. [24]
    T. M. J. Fruchterman und E. M. Reingold. Graph-drawing by force-directed placement. Software—Practice and Experience, 21(11):1129–1164, 1991.CrossRefGoogle Scholar
  25. [25]
    A. Garg. On drawing angle graphs. In [40], Seiten 84-95.Google Scholar
  26. [26]
    M. R. Garey und D. S. Johnson. Crossing Number is NP-Complete. SIAM Journal on Algebraic Discrete Methods, 4(3):312–316, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    D. S. Johnson. The NP-completeness column: An ongoing guide. Journal of Algorithms, 3:89–99, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    T. Kamada und S. Kawai. An algorithm for drawing general undirected graphs. Information Processing Letters, 31:7–15, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    T. Kamps, J. Kleinz und J. Read. Constraint-based spring-model algorithms for graph layout. In [4], Seiten 349-360.Google Scholar
  30. [30]
    S. Kirckpatrick, C. D. Gelatt und M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, Mai 1983.MathSciNetCrossRefGoogle Scholar
  31. [31]
    Donald E. Knuth. Computer Drawn Flowcharts. Communications of the ACM, 6(9):555–563, 1963CrossRefGoogle Scholar
  32. [32]
    J. A. McDonald und J. Pedersen. Geometric abstractions for constrained optimization of layouts. In A. Buja und P. A. Tukey (eds.), Computing and Graphics in Statistics, The IMA Volumes in Mathematics and its Applications, Nr. 36, pages 95–105. Springer, 1991.Google Scholar
  33. [33]
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller und E. Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6): 1087–1092, Juni 1953.CrossRefGoogle Scholar
  34. [34]
    S. C. North (ed.). Proceedings of the 4th International Symposium on Graph Drawing (GD’ 96), Lecture Notes in Computer Science, Nr. 1190. Springer, 1996.Google Scholar
  35. [35]
    W. D. Niven (ed.). The Scientific Papers of James Clark Maxwell, Dover Publications, New York, 1965.Google Scholar
  36. [36]
    J. F. Padgett und C. K. Ansell. Robust action and the rise of the Medici, 1400–1434. American Journal of Sociology 98:1259–1319, 1993.CrossRefGoogle Scholar
  37. [37]
    N. R. Quinn und M. A. Breuer. A force directed component placement procedure for printed circuit boards. IEEE Transactions on Circuits and Systems, 26(6):377–388, 1979.zbMATHCrossRefGoogle Scholar
  38. [38]
    J. Scott. Social Network Analysis: A Handbook. Sage Publications, 1991.Google Scholar
  39. [39]
    K. Sugiyama und K. Misue. A simple and unified method for drawing graphs: Magnetic-spring algorithm. In [40], Seiten 364-375.Google Scholar
  40. [40]
    R. Tamassia und I. G. Tollis (eds.). Proceedings of the 2nd International Symposium on Graph Drawing (GD’ 94), Lecture Notes in Computer Science, Nr. 894. Springer, 1995.Google Scholar
  41. [41]
    E. R. Tufte. Envisioning Information. Graphics Press, 1990.Google Scholar
  42. [42]
    D. Tunkelang. A practical approach to drawing undirected graphs. Technical Report CMU-CS-94-161, School of Computer Science, Carnegie Mellon University, Juni 1994.Google Scholar
  43. [43]
    W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, Third Series, 13:743–768, 1963.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    P. J. M. van Laarhoven und E. H. L. Aarts. Simulated Annealing: Theory and Applications. Reidel, 1988.Google Scholar
  45. [45]
    S. Wasserman und K. Faust. Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.Google Scholar
  46. [46]
    R. Webber. Finding the Best Viewpoint for Three-Dimensional Graph Drawings. PhD thesis, University of Newcastle, 1998.Google Scholar
  47. [47]
    S. H. Whitesides (ed.). Proceedings of the 6th International Symposium on Graph Drawing (GD’ 98), Lecture Notes in Computer Science, Nr. 1547. Springer, 1998.Google Scholar
  48. [48]
    G. Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo Methods, Applications of Mathematics, Nr. 27. Springer, 1995.Google Scholar
  49. [49]
    D. Wood. On higher-dimensional orthogonal graph drawing. Technical Report 96/286, Department of Computer Science, Monash University, November 1996.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1999

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Fakultät für Mathematik und InformatikUniversität KonstanzDeutschland

Personalised recommendations