Skip to main content

Shape-preserving interpolation with variable degree polynomial splines

  • Chapter
Advanced Course on FAIRSHAPE

Abstract

The main goal of this paper is to present some results obtained in functional shape-preserving interpolation using variable degree polynomial splines, and show how these functions are emerging as a powerful tool both in tension methods and in CAGD applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barsky, B.: Computer graphics and geometric modeling using Beta-splines. Springer Verlag, 1988.

    Google Scholar 

  2. Böhm, W., G. Farin, and J. Kahman: A survey of curves and surfaces methods in CAGD. Computer Aided Geom. Design, 1 (1984), 1–60.

    MATH  Google Scholar 

  3. de Boor, C.: A practical guide to splines. Springer, Berlin, 1978.

    Book  MATH  Google Scholar 

  4. Clements J.C.: Convexity preserving piecewise rational cubic interpolation. SIAM J. Numer. Anal. 27(1990), 1016–1023.

    Google Scholar 

  5. Cline, A.K.: Scalar and planar valued curve fitting using splines under tension. Commun A.C.M., bf 17 (1974), 218–223.

    MathSciNet  MATH  Google Scholar 

  6. Clough, R.W. and J.L. Tocher: Finite element stiffness matrices for analysis of plates in bending. in Proc. Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., Ohio 1965.

    Google Scholar 

  7. Costantini, P.: On monotone and convex spline interpolation. Math. Comp., 46 (1986), 203–214.

    Article  MathSciNet  MATH  Google Scholar 

  8. Costantini, P.: Co-monotone interpolating splines of arbitrary degree. A local approach. SIAM J. Sci. Statist. Comput., 8 (1987), 1026–1034.

    Article  MathSciNet  MATH  Google Scholar 

  9. Costantini, P.: An algorithm for computing shape-preserving interpolating splines of arbitrary degree. J. Comp. Appl. Math., 22 (1988), 89–136.

    Article  MathSciNet  MATH  Google Scholar 

  10. Costantini, P.: SPBSI1: a code for computing shape preserving bivariate spline interpolation. Universitâ di Siena, Report no. 216, 1989.

    Google Scholar 

  11. Costantini, P.: On some recent methods for shape-preserving bivariate interpolation. In Multivariate Interpolation and Approximation, W. Haussmann and K. Jetter (eds.) International Series in Numerical Mathematics, Vol. 94, Birkhäuser Verlag, Basel 59–68, 1990.

    Google Scholar 

  12. Costantini, P.: A general method for constrained curves with boundary conditions. In Multivariate Approximation: From CAGD to Wavelets, K. Jetter and F.I. Utreras (eds.), World Scientific Publishing Co., Inc., Singapore, 1993.

    Google Scholar 

  13. Costantini, P.: Boundary valued shape-preserving interpolating splines. Preprint, 1996, submitted to ACM Trans. Math. Software.

    Google Scholar 

  14. Costantini, P. and F. Fontanella: Shape preserving bivariate interpolation. SIAM J. Num. Anal., 27 (1990), 488–506.

    Article  MathSciNet  MATH  Google Scholar 

  15. Costantini, P. and C. Manni: A local scheme for bivariate co-monotone interpolation. Computer Aided Geometric Design, 8 (1991), 371–391.

    MathSciNet  MATH  Google Scholar 

  16. Costantini, P. and C. Manni: A bicubic shape-preserving blending scheme. Computer Aided Geom. Design, 13 (1996), 307–331.

    MathSciNet  MATH  Google Scholar 

  17. Costantini, P. and C. Manni: Monotonicity-preserving interpolation of non-gridded data. Preprint, 1995, to appear in Computer Aided Geometric Design.

    Google Scholar 

  18. Costantini, P. and C. Manni: On a class of polynomial triangular macro-elements. Preprint, 1995, to appear in proceedings of the International Conference on Scattered Data Fitting,J. Comp. Appl. Math..

    Google Scholar 

  19. Costantini, P. and C. Manni: A local tension scheme for scattered data interpolation. Preprint, 1996, submitted to SIAM J. Numer. Anal..

    Google Scholar 

  20. Delbourgo, R.: Accurate C l rational interpolants in tension. SIAM J. Numer. Anal., 30 (1993), 595–607.

    Article  MathSciNet  MATH  Google Scholar 

  21. Delbourgo R. and J.A. Gregory:Piecewise rational quadratic interpolation to monotonic data. IMA J. Numer. Anal., 2 (1982), 123–130.

    Article  MathSciNet  MATH  Google Scholar 

  22. Delbourgo R. and J.A. Gregory: C2 rational quadratic spline interpolation to monotonic data. IMA J. Numer. Anal., 3 (1983), 141–152.

    Article  MathSciNet  MATH  Google Scholar 

  23. Delbourgo R. and J.A. Gregory: The determination of derivative parameters for a monotonic rational quadratic interpolant. IMA J. Numer. Anal., 5 (1985), 397–406.

    Article  MathSciNet  MATH  Google Scholar 

  24. Delbourgo R. and J.A. Gregory: Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comput., 6 (1985), 967–976.

    Article  MathSciNet  MATH  Google Scholar 

  25. Dyn, N., D. Levin and S. Rippa: Data dependent triangulations for scattered data interpolation. Appl. Numer. Math, 12 (1993), 89–105.

    Article  MathSciNet  MATH  Google Scholar 

  26. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, Academic Press, London, 1988.

    MATH  Google Scholar 

  27. Foley T.A.: Interpolation with interval and point tension control using cubic weighted v-splines. ACM Trans. on Math. Softw., 13 (1987), 6896.

    Google Scholar 

  28. Foley T.A.: Local control of interval tension using weighted splines. Computer Aided Geom. Design 13 (1986), 281–294.

    Google Scholar 

  29. Foley T.A.: A shape preserving interpolant with tension controls. Computer Aided Geom. Design 5 (1988), 105–118.

    Google Scholar 

  30. Fritsch, R.E. and R.E. Carlson: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal., 17 (1980), 238–246.

    Article  MathSciNet  MATH  Google Scholar 

  31. Goodman T.N.T.: Shape preserving interpolation by parametric rational cubic splines. In International Series in Numerical Mathematics, vol 86, Birkhäuser Verlag, Basel, 1988, 149–158.

    Google Scholar 

  32. Goodman T.N.T.: Inflection of curves in two and three dimensions. Computer Aided Geom. Design 8 (1991), 37–50.

    Google Scholar 

  33. Goodman T N T and B.H. Ong: Shape preserving interpolation by space curves. University of Dundee, Report AA/963, 1996.

    Google Scholar 

  34. Goodman T.N.T. and K. Unsworth: Shape-preserving interpolation by parametrically defined curves. SIAM J. Numer. Anal 25 (1988), 1–13.

    Article  MathSciNet  Google Scholar 

  35. Goodman T N T and K. Unsworth: Shape preserving interpolation by curvature continuous parametric curves. Computer Aided Geom. Design 5 (1988), 323–340.

    MathSciNet  MATH  Google Scholar 

  36. Goodman, T.N.T., H.B. Said and L.H.T. Chang: Local derivatives estimation for scattered data interpolation, Appl. Math. and Comp. 68 (1995), 41–50.

    MathSciNet  MATH  Google Scholar 

  37. Gregory J. A.: Shape preserving rational spline interpolation. In Rational approximation and interpolation, Graves-Morris, Sarfaz and Varga (eds.), Springer, 1984, 431–441.

    Chapter  Google Scholar 

  38. Gregory, J.A.: Shape-preserving spline interpolation. Comput. Aided Design, 18 (1986), 53–57.

    Article  Google Scholar 

  39. Gregory J.A. and M. Sarfraz: A rational cubic spline with tension. Computer Aided Geom. Design 7 (1990), 1–13.

    MathSciNet  MATH  Google Scholar 

  40. Heß,W. and J.W. Schmidt: Convexity preserving interpolation with exponential splines. Computing 36 (1986), 335–342.

    Article  MathSciNet  Google Scholar 

  41. Kaklis, P.D. and D.G. Pandelis: Convexity preserving polynomial splines of non uniform degree. IMA J. Numer. Anal. 10 (1990), 223–234.

    Article  MathSciNet  MATH  Google Scholar 

  42. Kaklis, P.D. and N.S. Sapidis: Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree. Computer Aided Geometric Design 12 (1995), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  43. Kaufman, E.H. and G.D. Taylor: Approximation and interpolation by convexity-preserving rational splines. Constr. Approx., 10 (1994), 275283.

    Google Scholar 

  44. Kvasov, B.I.: GB-splines and algorithms of shape preserving approximation. Preprint, 1994, to appear on Int. J. on CAGD.

    Google Scholar 

  45. Lawson, C.L.: Software for C l surface interpolation. In J.R. Rice (ed.) Mathematical Software III, Academic Press, New York, 161–194, 1977.

    Google Scholar 

  46. Lorentz, G.G.: Bernstein Polynomials. University of Toronto Press, Toronto, 1953.

    MATH  Google Scholar 

  47. Nielson G.M.: Some piecewise polynomial alternatives to splines under tension. In Computer Aided Geomatric Design, R.E. Barnhill and R.F. Riesenfeld (eds.), Academic Press, 1974, 209–235.

    Google Scholar 

  48. Pruess, S.: Properties of splines in tension. J. Approx. Theory, 17 (1976), 86–96.

    Article  MathSciNet  MATH  Google Scholar 

  49. Pruess, S.: Alternatives to exponential splines in tension. Math. Comp., 33 (1979), 1273–1281.

    Google Scholar 

  50. Quak, E. and L.L. Schumaker: Cubic spline fitting using data dependent triangulations. Computer Aided Geometric Design 7 (1990), 293–301.

    MathSciNet  MATH  Google Scholar 

  51. Renka, R.J.: Algorithm 716. TSPACK: Tension spline curve fitting package. ACM Trans. Math. Software 19 (1993), 81–94.

    Article  MATH  Google Scholar 

  52. Rentrop, P.: An algorithm for the computation of the exponential spline. Numer. Math., 35 (1980), 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  53. Rentrop P. and U. Weyer: Computational strategies for the tension parameters of the exponential spline. In: Lecture Notes in Control and Information Sciences, Vol. 95, 1987, 122–134.

    Google Scholar 

  54. Rippa, S.: Long thin triangles can be good for linear interpolation. S.AM J. Numer. Anal. 20 (1992), 257–270.

    Article  MathSciNet  Google Scholar 

  55. Sapidis N.S. and P.D. Kaklis: An algorithm for constructing convexity and monotonicity-preserving splines in tension. Computer Aided Geom. Design, 5 (1988), 127–137.

    MathSciNet  MATH  Google Scholar 

  56. Sapidis N.S. and P.D. Kaklis: A method for computing the tension parameters in convexity-preserving spline in tension interpolation. Numer. Math., 54 (1988), 179–192.

    Article  MathSciNet  MATH  Google Scholar 

  57. Schmidt, J.W.: On shape preserving spline interpolation: existence theorems and determination of optimal splines. Approximation and Function Spaces, Banach Center Publications, Volume 22, PWN-Polish Scientific Publishers, Warsaw, 1989.

    Google Scholar 

  58. Schmidt, J. W.: Rational biquadratic C 1 splines in S-convex interpolation. Computing 47 (1991), 87–96.

    Article  MathSciNet  MATH  Google Scholar 

  59. Schmidt J. W. and W. Heß: Convexity preserving interpolation with exponential splines. Computing, 36 (1986), 335–342.

    Article  MathSciNet  MATH  Google Scholar 

  60. Schmidt, J.W. and W. Heß: Quadratic and related exponential splines in shape-preserving interpolation. J. Comp. Appl. Math. 18 (1987), 321–329.

    Article  MATH  Google Scholar 

  61. Schumaker, L.L.: Computing optimal triangulations in polygonal domains. Computer Aided Geometric Design 10 (1993), 329–345.

    Article  MathSciNet  MATH  Google Scholar 

  62. Schweikert, D.G.: Interpolatory tension splines with automatic selection of tension factors. J. Math. Phis. 45 (1966), 312–317.

    MathSciNet  MATH  Google Scholar 

  63. Späth, H.: Exponential spline interpolation. Computing, 4 (1969), 225–233.

    Article  MATH  Google Scholar 

  64. Späth, H.: Spline algorithms for curves and surfaces. Utilitas Mathematica Publishing Incorporated, Winnipeg, 1974.

    MATH  Google Scholar 

  65. Strang, G. and G. Fix: An Analysis of the Finite Element Method. Prentice-I Hall, Englewood Cliffs, NJ, 1973.

    MATH  Google Scholar 

  66. Weyer, U.: Non-negative exponential splines. CAD, 20 (1988), 11–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Costantini, P. (1996). Shape-preserving interpolation with variable degree polynomial splines. In: Hoschek, J., Kaklis, P.D. (eds) Advanced Course on FAIRSHAPE. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82969-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-82969-6_8

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-02634-1

  • Online ISBN: 978-3-322-82969-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics