Skip to main content

Real-Time Optimisation for the Guidance of Dynamic Systems

  • Chapter
  • 114 Accesses

Abstract

Optimal guidance of a dynamic process requires a fast algorithm for the computation of optimal trajectories. The method described in this paper modifies the conventional “direct approach” with control parametrisation. Piecewise linearisation of the dynamic system accelerates the solution of initial value problems and facilitates the computation of gradients. A control transformation involving a simple feedback term allows to provide starting values automatically and increases the robustness of the method. The real-time capability is demonstrated at an aircraft which is to intercept a moving target in minimum time.

This research was partly supported by DORNIER (today Deutsche Aerospace).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shinar, J.; Well, K.H.; Järmark, B.: Near-optimal feedback control for three- dimensional interceptions. ICAS-paper 86-5.1.3,15th ICAS Congress, London, Sept. 1986.

    Google Scholar 

  2. Price, D.B.; Calise, A.J.; Moerder, D.D.: Piloted simulation of an onboard trajectory optimisation algorithm. J. of Guidance, Control, and Dynamics 7 (3): 355–360, May — June 1984.

    Article  Google Scholar 

  3. AIAA-paper No. 91-2820, AIAA- Guidance, Navigation, and Control Conference, New Orleans, Lousiana, August 12–14, 1991.

    Google Scholar 

  4. Hardtla, J.W.; Piehler, M.J.; Bradt, J.E.: Guidance requirements for future launch vehicles. AIAA-paper No. 87-2462, AIAA-Guidance, Navigation, and Control Conference, 1987.

    Google Scholar 

  5. Jänsch, C.; Paus, M.; Gill, P.: Application of sparse nonlinear programming and efficient collocation to optimal guidance. To be presented at the Sci- CADE95 meeting, Stanford, CA, March 28 — April 1, 1995.

    Google Scholar 

  6. Miele, A.: Flight Mechanics. Reading, Mass./ Palo/ Alto London: Addison-Wesley Publishing Company, Inc., 1962.

    Google Scholar 

  7. Jänsch, C.; Schnepper, K.; Well, K.H.: Multiphase trajectory optimisation methods with applications to hypersonic vehicles. In: Applied mathematics in aerospace science and engineering (Miele and Salvetti, Eds.), chapter 8, Plenum Press, New York, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 John Wiley & Sons Ltd and B. G. Teubner

About this chapter

Cite this chapter

Paus, M., Grimm, W., Well, K.H. (1996). Real-Time Optimisation for the Guidance of Dynamic Systems. In: Neunzert, H. (eds) Progress in Industrial Mathematics at ECMI 94. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82967-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-82967-2_5

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-82968-9

  • Online ISBN: 978-3-322-82967-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics