Skip to main content

Adaptive Algorithms in Dynamical Process Simulation

  • Chapter

Abstract

Dynamical process simulation plays an increasingly important role in the design and control of chemical plants. Mathematically speaking, the simulation of such processes requires the numerical solution of systems of partial differential equations (PDEs) of reaction-diffusion type with possibly mild convection. In contrast to some other fields of application, time dependence of the process is of real interest. Moreover, due to additional constraints, differential-algebraic equations will naturally arise. As for the spatial geometry, radial or simply plane symmetry will result in 1-D problems, whereas more complex situations will lead to 2-D or even 3-D models, often only given in the form of some CAD input. Even though such problems have been around for quite a while, they still represent a class of hard problems. For this reason, the development of robust and fast algorithms has been a topic of continuing investigation during the last years. In particular, significant progress has been made by the development of adaptive algorithms, which aim at the control of time and space grids in such a way that on one hand the solution is as accurate as required by the user and on the other hand the necessary work to obtain such a solution is minimized. The present paper surveys some of the essential features of such adaptive methods, which have been developed recently by the authors.

Invited talk, ECMI meeting 1994, Kaiserslautern

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. F. Benkhaldoun, B. Larrouturou: Explicit adaptive calculations of wrinkled flame propagation. Int. J. Numer. Meth. in Fluids 7, p. 1147–1158 (1987)

    Article  MATH  Google Scholar 

  2. F.A. Bornemann: An Adaptive Multilevel Approach to Parabolic Equations. I: General Theory and ID-Implementation. IMPACT Comput. Sci. Engrg. 2, p. 279–317 (1990)

    Article  MATH  Google Scholar 

  3. F.A. Bornemann: An Adaptive Multilevel Approach to Parabolic Equations. II: Variable Order Time Discretization Based on Multiplicative Error Correction. IMPACT Comput. Sci. Engrg. 3, p. 93–122 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bornemann, P. Deuflhard: Cascadic multigrid methods for elliptic problems. Submitted to Numer. Math. (1994)

    Google Scholar 

  5. J.H. Bramble, J.E. Pasciak, J. Xu: Convergence estimate for multigrid algorithms without regularity assumptions. Mat. Comp. 57, p. 23–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Deuflhard: Recent Progress in Extrapolation Methods for ODE’s. SI AM Review 27, p. 505–535 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Deuflhard: Cascadic conjugate gradient methods for elliptic partial differential equations: algorithm and numerical results. D.E Keyes, J. Xu (eds.): AMS, Contemporary Mathematics Vol. 180, p. 29–42 (1994)

    Google Scholar 

  8. P. Deuflhard, F. Bornemann: Numerische Mathematik II. — Integration von gewöhnlichen Differentialgleichungen, de Gruyter Lehrbuch, Berlin, New York (1991)

    Google Scholar 

  9. P. Deuflhard, U. Nowak: Extrapolation Integrators for Quasilinear Implicit ODE’s. In: P. Deuflhard, B. Engquist (eds.): Large Scale Scientific Computing. Progress in Scientific Computing, Birkhaeuser 7, p. 37–50 (1987)

    Chapter  Google Scholar 

  10. P. Deuflhard, P. Leinen, H. Yserentant: Concepts of an Adaptive Hierarchical Finite Element Code. IMPACT Comput. Sci. Engrg. 1, p. 3–35 (1989)

    Article  MATH  Google Scholar 

  11. P. Deuflhard, U. Nowak, M. Wulkow: Recent Developments in Chemical Computing. Computers Chem. Engrg. 14, p. 1249–1258 (1990)

    Article  Google Scholar 

  12. J.E. Flaherty, P.K. Moore, C. Ozturan: Adaptive Overlapping Grid Methods for Parabolic Systems. In: J.E. Flaherty, P.J. Paslow, M.S. Shephard, J.D. Vasilakis (eds.): Adaptive Methods for Partial Differential Equations, SIAM, p. 176–193 (1989)

    Google Scholar 

  13. F.N. Fritsch, J. Butland: A Method for Constructing Local Monotone Piecewise Cubic Interpolants. SIAM J. Sci. Stat. Comput. 5, p. 300–304 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. C.W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall (1971)

    MATH  Google Scholar 

  15. E. Hairer, G. Wanner: Solving Ordinary Differential Equations IL — Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics 14, Springer Verlag, Berlin-Heidelberg (1991)

    Google Scholar 

  16. J. Lang, A. Walter: A finite element method adaptive in space and time for nonlinear reaction-diffusion systems. IMPACT Comput. Sci. Engrg. 4, p. 269– 314 (1992)

    Google Scholar 

  17. J. Lang: High-resolution selfadaptive computations on chemical reaction- diffusion problems with internal boundaries. Submitted to Chem. Engrg. Sci.

    Google Scholar 

  18. J. Lang: Two-dimensional fully adaptive solutions of reaction-diffusion equations. Accepted for publication in Appl. Numer. Math. (1995)

    Google Scholar 

  19. U. Maas, J. Warnatz: Simulation of chemically reacting Flows in two- dimensional geometries. IMPACT Comput. Sci. Engrg. 1, p. 394–420 (1989)

    Article  MATH  Google Scholar 

  20. P.K. Moore, J.E. Flaherty: High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations. BIT 33, p. 309–331 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. U. Nowak: Adaptive Linienmethoden für nichtlineare parabolische Systeme in einer Raumdimension. Technical Report TR 93-14, Konrad-Zuse-Zentrum Berlin (1993)

    Google Scholar 

  22. U. Nowak, J. Frauhammer, U. Nieken, G. Eigenberger: A fully adaptive algorithm for parabolic partial differential equations in one space dimension. accepted for publication in Comput. & Chem. Engrg. (1995)

    Google Scholar 

  23. A.C. Hindmarsh: ODEPACK, A Systematized Collection of ODE Solvers. In Scientific Computing, R. S. Stepleman (eds.), North-Holland, Amsterdam, p. 55–64 (1983)

    Google Scholar 

  24. N. Peters, J. Warnatz (Eds): Numerical Methods in Laminar Flame Propagation. Notes in Numerical Fluid Dynamics 6, p. 232–260, Vieweg (1982)

    MATH  Google Scholar 

  25. L.R. Petzold: A Description of DASSL: a differential-algebraic system solver. Proc. IMACS World Congress, Montreal, Canada (1982)

    Google Scholar 

  26. L.R. Petzold: An adaptive Moving Grid Method for One-Dimensional Systems of Partial Differential Equations and its Numerical Solution. Proc. Workshop on Adaptive Methods for Partial Differential Equations, Renselaer Polytechnic Institute (1988)

    Google Scholar 

  27. M. Roche: Rosenbrock methods for differential algebraic equations. Numer. Mat. 52, p. 45–63 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Rothe: Zweidimensionale parabolische Randwertaufgaben als Grenzfall ein- dimensionaler Anwendungen. Math. Ann. 102, p. 650–670 (1930)

    Article  MathSciNet  Google Scholar 

  29. K. Strehmel, R. Weiner: Linear-implizite Runge-Kutta-Methoden und ihre Anwendung. Teubner-Texte zur Mathematik, Band 127, B.G. Teubner Ver-lagsgesellschaft, Stuttgart-Leipzig (1992)

    MATH  Google Scholar 

  30. H.A. van der Vorst: BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 13, No. 2, p. 631–644 (1992)

    Google Scholar 

  31. J. Xu: Theory of Multilevel Methods. Department of Mathematics, Pennsylvania State University, University Park, Report No. AM 48, Thesis (1989)

    Google Scholar 

  32. H. Yserentant: On the multilevel splitting of finite element spaces. Numer. Math. 49, p. 379–412 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. G.W. Zumbusch: Simultanous h-p Adaptation in Multilevel Finite Elements, Freie Universität Berlin, Fachbereich Mathematik, Thesis (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 John Wiley & Sons Ltd and B. G. Teubner

About this chapter

Cite this chapter

Deuflhard, P., Lang, J., Nowak, U. (1996). Adaptive Algorithms in Dynamical Process Simulation. In: Neunzert, H. (eds) Progress in Industrial Mathematics at ECMI 94. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-82967-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-82967-2_16

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-82968-9

  • Online ISBN: 978-3-322-82967-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics