Movie Marketing Strategy Formation with System Dynamics: Towards a multi-disciplinary adoption/diffusion theory of cinema-going

  • David C. Lane
  • Elke Husemann


This paper proposes a formal theory for the causal mechanisms underlying viewing figures for cinema films. It draws upon a range of diffusion theories, introducing them by using specific illustrations from sociology, epidemiology and marketing. These theories are employed in the construction of a system dynamics model which is then used to explore the marketing of movies. In this model these mechanisms are used to represent interest-based word-of-mouth effects, advertising, experience-based word-of-mouth effects, positive network externalities and disengagement. The model generates a range of behaviour modes and these are described. They offer one possible explanation for why the product lifecycle of many movies is relatively short. By demonstrating the relevance of the various model mechanisms to this particular phenomenon the paper also re-emphasises the isomorphic nature of the constituent diffusion theories. Finally, the model also has potential both for further extension and for use in supporting policy making in the actual social system that was modelled.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abell, P. 1994. Sociological Theory: What has gone wrong and how to put it right, a view from Britain. In Formal Theory in Sociology ed. J. Hage, SUN Y Press: New York; pp. 105–119.Google Scholar
  2. Abell, P. and D. Reyniers. 2000. On The Failure Of Social Theory. The British Journal of Sociology 51(4): 739–750.CrossRefGoogle Scholar
  3. Bailey, N. T. J. 1957. The Mathematical Theory of Epidemics. Chards Griffin: London.Google Scholar
  4. Bass, F. M. 1969. A new product growth model for consumer durables. Management Science 15(5): 215–227.CrossRefGoogle Scholar
  5. Bizony, P. 1994. 2001 — Filming the future. Aurum Press: London.Google Scholar
  6. Bloomfield, B. 1982. Cosmology, Knowledge and Social Structure: The case of Forrester and system dynamics. Journal of Applied Systems Analysis 9(3–15.Google Scholar
  7. Chatterjee, R. and J. Eliashberg. 1990. The Innovation Diffusion Process in a Heterogeneous Population: A Micromodelling Approach. Management Science 36(9): 1057- 1079.CrossRefGoogle Scholar
  8. Coleman, J. S. 1963. Introduction to Mathematical Sociology. The Free Press: New York.Google Scholar
  9. Coleman, J. S., E. Katz and H. Merzel. 1957. The Diffusion of Innovation Amongst Physicians. Sociometry 20(253–270.CrossRefGoogle Scholar
  10. Dodson, J. A. and E. Muller. 1978. Models of New Product Diffusion Through Advertising and Word-of-mouth. Management Science 24(15): 1568–1578.CrossRefGoogle Scholar
  11. Eberlein, R., J. Melhuish and D. Peterson. 1991. Vensim: The Ventana simulation environment reference manual. Ventana Systems: Harvard.Google Scholar
  12. Eliashberg, J., S. Swami, et al. 2001. Implementing and Evaluating SilverScreener: A Marketing management support system for movie exhibitors. Interfaces 31(3): 108- 127.CrossRefGoogle Scholar
  13. Eschenbach, T. G. 1992. Spiderplots versus tomado diagrams for sensitivity analysis. Interfaces 22(6): 40–46.CrossRefGoogle Scholar
  14. Fine, P. 1993. Herd Immunity: History, theory and practice. Epidemiologic Review 15(265–302.Google Scholar
  15. Finkelstein, S. N., J. B. Homer and E. J. Sondik. 1984.Modelling the Dynamics of Decision-Making for Emerging Medical Technologies. R&D Management 14(3): 175- 191.CrossRefGoogle Scholar
  16. Ford, D. and J. D. Sterman. 1998. Expert Knowledge Elicitation for Improving Mental and Formal Models. System Dynamics Review 14(4): 309–340.CrossRefGoogle Scholar
  17. Forrester, J. W. 1961. Industrial Dynamics. MIT Press: Cambridge, MA.Google Scholar
  18. Forrester, J. W. 1968. Principles of Systems. MIT Press: Cambridge, MA.Google Scholar
  19. Forrester, J. W. 1973. Counterintuitive behaviour of social systems. In Towards Global Equilibrium eds. D. L. Meadows and D. H. Meadows, Wright-Allen Press: Cambridge, MA; pp. 3–30.Google Scholar
  20. Forrester, J. W. 1985. Future development of the system dynamics paradigm. D-3715. Dept. memo, system dynamics group, MIT. Cambridge, MA.Google Scholar
  21. Forrester, J. W. 1992. Policies, decisions and information sources for modelling. European Journal of Operational Research 59(1): 42–63.CrossRefGoogle Scholar
  22. Forrester, J. W. and P. M. Senge. 1980. Tests for building confidence in system dynamics models. In System Dynamics: TIMS Studies in the Management Sciences eds. A. A. Lagasto, J. W. Forrester and J. M. Lyneis, North-Holland: Oxford; pp. 209–228.Google Scholar
  23. Gladwell, M. 2000. The Tipping Point: How little things can make a big difference. Little, Brown and Co.: London.Google Scholar
  24. Goldman, W. 1984. Adventures In The Screen Trade: A personal view of Hollywood and screenwriting. Macdonald & Co: London.Google Scholar
  25. Graham, A. K. 1980. Parameter Estimation in System Dynamics Modelling. In Elements of the System Dynamics Method ed. J. Randers, MIT Press: Cambridge, MA; pp. 143- 160.Google Scholar
  26. Graham, A. K., J. Moore and C. Y. Choi. 2002. How robust are conclusions from a complex calibrated model, really? A project management model benchmark using fit- constrained Monte Carlo analysis. In Proceedings of the 2002 International System Dynamics Conference (Palermo, Italy) eds. P. I. Davidsen, E. Mollona, V. G. Diker, R. S. Langer and J. I. Rowe, System Dynamics Society: Albany, NY; pp. (CD based).Google Scholar
  27. Größler, A. and J.-H. Thun. 2002. Policies Influencing the Diffusion of Instant Messaging. In Proceedings of the 2002 International System Dynamics Conference (Palermo, Italy) eds. P. I. Davidsen, E. Mollona, V. G. Diker, R. S. Langer and J. I. Rowe, System Dynamics Society: Albany, NY; pp. (CD based).Google Scholar
  28. Hage, J. (ed.). 1994. Formal Theory in Sociology. New York, SUNY Press.Google Scholar
  29. Hedström, P. and R. Swedberg (eds.). 1998. Social Mechanisms: An analytical approach to social theory. Cambridge, CUP.Google Scholar
  30. Homer, J. B. 1987. A Diffusion Model with Application to Evolving Medical Technologies. Technological Forecasting and Social Change 31(3): 197–218.CrossRefGoogle Scholar
  31. Lambin, J. 1997. Strategic Marketing. McGraw-Hill: New York.Google Scholar
  32. Lane, D. C. 1999. Social theory and system dynamics practice. European Journal of Operational Research 113(3): 501–527.CrossRefGoogle Scholar
  33. Lane, D. C. 2000. Diagramming Conventions in System Dynamics. Journal of the Operational Research Society 51(2): 241–245.Google Scholar
  34. Lane, D. C. 2001. Rerum cognoscere causas: Part II — Opportunities generated by the agency/structure debate and suggestions for clarifying the social theoretic position of system dynamics. System Dynamics Review 17(4): 293–309.CrossRefGoogle Scholar
  35. Lane, D. C. and E. Husemann. 2002. Steering Away From Scylla, Falling Into Charybdis: The importance of recognising, simulating and challenging reinforcing loops in social systems. In Entscheiden in komplexen Systemen ed. P. M. Milling, Duncker & Humblot: Berlin; pp. 27–68.Google Scholar
  36. Liebenstein, H. 1948. Bandwagon, Snob and Veblen Effects in the Theory of Consumer Demand. Quarterly Journal of Economics 64(2): 165–201.Google Scholar
  37. Lyneis, J. M. and A. L. Pugh. 1996. Automated vs. ‘Hand’ Calibration of System Dynamics Models: An experiment with a simple project model. In System Dynamics ’96: Proceedings of the 1996 international system dynamics conference eds. G. P. Richardson and J. D. Sterman, System Dynamics Society: Cambridge, MA; pp. 317- 320.Google Scholar
  38. Mahajan, V., E. Muller and F. M. Bass. 1990. New Product Diffusion Models in Marketing: A review and directions for research. Journal of Marketing 54(1–26.)CrossRefGoogle Scholar
  39. Mahajan, V., E. Muller and R. A. Kerin. 1984. Introduction Strategy for New Products with Positive and Negative Word-of-mouth. Management Science 30(12): 1389–1404.CrossRefGoogle Scholar
  40. Mahajan, V. and R. A. Peterson. 1979. First-purchase Diffusion Models of New-product Acceptance. Technological Forecasting and Social Change 15(127–146)CrossRefGoogle Scholar
  41. Milling, P. M. 1974. Der technische Fortschritt beim Produktionprozeß — Ein dynamisches Modell für innovative Industrieunternehmen. Gabler: Wiesbaden.Google Scholar
  42. Milling, P. M. 1988. Controlling the market performance of new products. In Proceedings of the 4th International Conference on Systems Research Informatics and Cybernetics University Osnabrueck: Baden-Baden, Germany; pp. 1–10.Google Scholar
  43. Milling, P. M. 1996. Modeling Innovation Processes For Decision Support And Management Simulation. System Dynamics Review 12(3): 211–234.CrossRefGoogle Scholar
  44. Milling, P. M. 2002. Understanding and Managing Innovation Processes (Jay Wright Forrester Prize Lecture, 2001). System Dynamics Review 18(1): 73–86.CrossRefGoogle Scholar
  45. Milling, P. M. and F. Maier. 1996. Invention, Innovation und Diffusion. Duncker & Humblot: Berlin.Google Scholar
  46. Murray, J. D. 1989. Mathematical Biology. Springer-Verlag: Berlin.Google Scholar
  47. Nuthmann, C. 1994. Using Human Judgement in System Dynamics Models of Social Systems. System Dynamics Review 10(1): 1–27.CrossRefGoogle Scholar
  48. Randers, J. 1980. Guidelines for model conceptualisation. In Elements of the System Dynamics Method ed. J. Randers, MIT Press: Cambridge, MA; pp. 117–139.Google Scholar
  49. Rao, A. G. and M. Yamada. 1988. Forecasting with a Repeat Purchase Diffusion Model. Management Science 34(6): 734–752.CrossRefGoogle Scholar
  50. Richardson, G. P., J. A. M. Vennix, D. F. Andersen, J. Rohrbaugh and W. A. Wallace. 1989. Elicting group knowledge for model-building. In Computer-based management of complex systems eds. P. M. Milling and E. O. K. Zahn, Springer: Berlin; pp. 343- 357.CrossRefGoogle Scholar
  51. Rogers, E. 1995. Diffusion of Innovations (4th Ed.). Free Press: New York.Google Scholar
  52. Rohlfs, J. H. 2003. Bandwagon Effects in High-technology Industries. MIT Press: London.Google Scholar
  53. Senge, P. M. 1990. Catalyzing systems thinking within organizations. In Advances in Organization Development ed. F. Massarik, Ablex: Norwood, NJ; pp. 197–246.Google Scholar
  54. Shapiro, C. and H. R. Varían. 1999. Information Rules: A strategic Guide to the network economy. HBS Press: Boston.Google Scholar
  55. Sterman, J. D. 1989. Modelling managerial behaviour: misperceptions of feedback in a dynamic decision making experiment. Management Science 35(3): 321–339.CrossRefGoogle Scholar
  56. Sterman, J. D. 1994. Learning In And About Complex Systems. System Dynamics Review 10(2–3): 291–330.CrossRefGoogle Scholar
  57. Sterman, J. D. 2000. Business Dynamics: Systems thinking and modeling for a complex world. Irwin/McGraw-Hill.: New York.Google Scholar
  58. Stoneman, P. 2002. The Economics of Technological Diffusion. Blackwell: Oxford.Google Scholar
  59. Thun, J.-H., A. GrôBier and P. M. Milling. 2000. The Diffusion of Goods Considering Network Externalities: A system dynamics-based approach. In Proceedings of the 2000 International System Dynamics Conference (Bergen, Norway) eds. P. Davideson, D. N. Ford and A. N. Mashayekhi, System Dynamics Society: Albany, NY; pp. (CD based).Google Scholar
  60. Tocher, K. D. 1963. The Art of Simulation. Hodder and Stoughton: London.Google Scholar
  61. van den Berg, A. 1998. Is Sociological Theory Too Grand For Social Mechanisms? In Social Mechanisms: An analytical approach to social theory eds. P. Hedstrom and R. Swedberg, CUP: Cambridge; pp.Google Scholar
  62. van Horn, R. L. 1971. Validation of simulation results. Management Science 17(5): 247- 258.CrossRefGoogle Scholar
  63. Vennix, J. A. M. 1996. Group Model-building: Facilitating team learning using system dynamics. Wiley: Chichester.Google Scholar
  64. Vennix, J. A. M. and J. W. Gubbels. 1992. Knowledge elicitation in conceptual model building: a case study in modeling a regional Dutch health care system. European Journal of Operational Research 59(1): 85–101.CrossRefGoogle Scholar
  65. Verhulst, P. F. 1838. Notice sur la loi qui la population suit dans son accroissement. Corr. Math. etPhys. 10(113–121).Google Scholar
  66. von Bertalanfíy, L. 1950. The Theory of Open Systems in Physics and Biology. In Systems thinking: selected readings ed. F. E. Emery, Penguin: Harmondsworth; pp. 70–85.Google Scholar

Copyright information

© Deutscher Universitäts-Verlag/GWV Fachverlage GmbH, Wiesbaden 2004

Authors and Affiliations

  • David C. Lane
    • 1
  • Elke Husemann
  1. 1.Interdisciplinary Institute of Management / Operational Research Department, London School of Economics and Political ScienceUniversity of LondonLondonBritain

Personalised recommendations