Phenomenological basis of gauge theories of strong, electromagnetic, and weak interactions

  • Manfred Böhm
  • Ansgar Denner
  • Hans Joos


The gauge theories of the strong and electroweak interactions of elementary particles were developed from phenomenological models which provided first explanations of the experimental results. These models are based on the fact that the fundamental constituents of matter are leptons and quarks. Guided by the success of Quantum Electrodynamics, the fundamental forces are described by the exchange of gauge bosons between these constituents. The gluons are responsible for the strong interaction, the photon, the W and Z bosons for the electroweak interaction. The quantum numbers and the basic properties of the fundamental fermions and bosons are resumed in Sect. 1.1. In order to formulate and apply these dynamical ideas, elements of relativistic quantum theory and of group theory are needed. They are presented in Sect. 1.2. In Sect. 1.3, the quantum numbers and wave functions of the hadrons in the framework of the phenomenological quark model, especially the arguments for colour and the non-relativistic treatment of quarkonia, are reviewed. The phenomenological description of the electroweak interaction and of the parton model, together with some typical applications, are given in Sects. 1.4 and 1.5. The importance of precision calculations, radiative corrections (Sect. 1.6), and arguments for gauge theories as relativistic quantum field theories (Sect. 1.7) conclude this chapter.


Gauge Theory Gauge Boson Quark Model Quantum Chromo Dynamic Feynman Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ab83]
    H. Abramowicz et al., Z. Phys. C17 (1983) 283.ADSGoogle Scholar
  2. [Ad66]
    S.L. Adler, Phys. Rev. 143 (1966) 1144.CrossRefADSGoogle Scholar
  3. [Ad68]
    S.L. Adler and R.F. Dashen, Current Algebras and Applications to Particle Physics, Frontiers in physics Vol. 30, (W.A. Benjamin, Inc., New York, 1968).zbMATHGoogle Scholar
  4. [Ad70]
    S.L. Adler, Perturbation Theory Anomalies in Lectures on Elementary Particles and Quantum Field Theory, eds. S. Deser et al. (Cambridge, Massachusetts, 1970) p. 1.Google Scholar
  5. [Af00]
    T. Affolder et al. (CDF Coll.), Phys. Rev. D61 (2000) 072005.ADSGoogle Scholar
  6. [Al85]
    D. Allasia et al., Z. Phys. C28 (1985) 321.ADSGoogle Scholar
  7. [Ap75]
    T. Appelquist and H.D. Politzer, Phys. Rev. D12 (1975) 1404 andADSGoogle Scholar
  8. [Ap75a]
    T. Appelquist and H.D. Politzer, Phys. Rev. Lett. 34 (1975) 43.CrossRefADSGoogle Scholar
  9. [Ar95]
    M. Arneodo et al. (NMC Coll.), Phys. Lett. B364 (1995) 107.ADSGoogle Scholar
  10. [Ar83]
    G. Arnison et al. (UA1 Coll.), Phys. Lett. 122B (1983) 103 andADSGoogle Scholar
  11. [Ar83a]
    G. Arnison et al. (UA1 Coll.), Phys. Lett. 126B (1983) 398;ADSGoogle Scholar
  12. [Ar83b]
    M. Banner et al. (UA2 Coll.), Phys. Lett. 122B (1983) 476;ADSGoogle Scholar
  13. [Ar83c]
    P. Bagnaia et al. (UA2 Coll.), Phys. Lett. 129B (1983) 130.ADSGoogle Scholar
  14. [Au87]
    J.J. Aubert et al. (EMC Coll.), Nucl. Phys. B293 (1987) 740.CrossRefADSGoogle Scholar
  15. [Ba72]
    W.A. Bardeen, R. Gastmanns and B. Lautrup, Nucl. Phys. B46 (1972) 319.CrossRefADSGoogle Scholar
  16. [Ba79]
    J. Bailey et al., Nucl. Phys. B150 (1979) 1.CrossRefADSGoogle Scholar
  17. [Be71]
    S.M. Berman, J.D. Bjorken and J.B. Kogut, Phys. Rev. D4 (1971) 3388.ADSGoogle Scholar
  18. [Be75]
    F.A. Berends and R. Gastmans, Phys. Lett. 55B (1975) 311.ADSGoogle Scholar
  19. [Bj69]
    J.D. Bjorken, Phys. Rev. 179 (1969) 1547.CrossRefADSGoogle Scholar
  20. [Bj69a]
    J.D. Bjorken and E.A. Paschos, Phys. Rev. 185 (1969) 1975.CrossRefADSGoogle Scholar
  21. [Bo80]
    M. Böhm, Z. Phys. C3 (1980) 321.ADSGoogle Scholar
  22. [Br79]
    R. Brandelik et al. (TASSO Coll.), Phys. Lett. 86B (1979) 243;ADSGoogle Scholar
  23. [Br79a]
    Ch. Berger et al. (PLUTO Coll.), Phys. Lett. 86B (1979) 418;ADSGoogle Scholar
  24. [Br79b]
    D.P. Barber et al. (MARK-J Coll.), Phys. Rev. Lett. 43 (1979) 830;CrossRefADSGoogle Scholar
  25. [Br79c]
    W. Bartel et al. (JADE Coll.), Phys. Lett. 91B (1980) 142.ADSGoogle Scholar
  26. [Br87]
    V.M. Braun and A.V. Kolesnichenko, Nucl. Phys. B283 (1987) 723.CrossRefADSGoogle Scholar
  27. [Br00]
    H.N. Brown et al. (Muon g-2 Coll.), Phys. Rev. D62 (2000) 091101.ADSGoogle Scholar
  28. [Ca63]
    N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.CrossRefADSGoogle Scholar
  29. [Ca69]
    C.G. Callan, Jr. and D.J. Gross, Phys. Rev. Lett. 22 (1969) 156.CrossRefADSGoogle Scholar
  30. [C179]
    F.E. Close, An Introduction to Quarks and Partons, (Academic Press, London, New York, 1979).Google Scholar
  31. [Cz95]
    A. Czarnecki, B. Krause and W.J. Marciano, Phys. Rev. D52 (1995) R2619 andADSGoogle Scholar
  32. [Cz95a]
    A. Czarnecki, B. Krause and W.J. Marciano, Phys. Rev. Lett. 76 (1996) 3267.CrossRefADSGoogle Scholar
  33. [Cz00]
    A. Czarnecki and W.J. Marciano, hep-ph/0010194.Google Scholar
  34. [dR75]
    A. de Rújula, H. Georgi and S.L. Glashow, Phys. Rev. D12 (1975) 147.ADSGoogle Scholar
  35. [Ei95]
    S. Eidelman and F. Jegerlehner, Z. Phys. C67 (1995) 585.ADSGoogle Scholar
  36. [Fe49]
    R.P. Feynman, Phys. Rev. 76 (1949) 769.CrossRefzbMATHADSMathSciNetGoogle Scholar
  37. [Fe69]
    R.P. Feynman, Phys. Rev. Lett. 23 (1969) 1415.CrossRefADSGoogle Scholar
  38. [Fi77]
    R.D. Field and R.P. Feynman, Phys. Rev. D15 (1977) 2590.ADSGoogle Scholar
  39. [Ga74]
    M.K. Gaillard and B.W. Lee, Phys. Rev. Lett. 33 (1974) 108 andCrossRefADSGoogle Scholar
  40. [Ga74a]
    M.K. Gaillard and B.W. Lee, Phys. Rev. D10 (1974) 897.ADSGoogle Scholar
  41. [Ge64]
    M. Gell-Mann, Phys. Lett. 8 (1964) 214.CrossRefADSGoogle Scholar
  42. [Ge72]
    M. Gell-Mann, Quarks in Elementary Particle Physics, Multiparticle Aspects, Acta Physica Austriaca, Suppl. IX, ed. P. Urban (Wien, New York, 1972) p. 733.Google Scholar
  43. [Gl70]
    S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.ADSGoogle Scholar
  44. [Go67]
    K. Gottfried, Phys. Rev. Lett. 18 (1967) 1174.CrossRefADSGoogle Scholar
  45. [Gr69]
    D.J. Gross and C.H. Llewellyn Smith, Nucl. Phys. B14 (1969) 337.CrossRefADSGoogle Scholar
  46. [Gr73]
    M. Gronau, F. Ravndal and Y. Zarmi, Nucl. Phys. B51 (1973) 611.CrossRefADSGoogle Scholar
  47. [Gr76]
    D. Gromes and I.O. Stamatescu, Nucl. Phys. B112 (1976) 213.CrossRefADSGoogle Scholar
  48. [Hu52]
    C. Hurst, Proc. Camb. Soc. 48 (1952) 625.CrossRefzbMATHADSMathSciNetGoogle Scholar
  49. [Ja72]
    R. Jackiw and S. Weinberg, Phys. Rev. D5 (1972) 2396.ADSGoogle Scholar
  50. [Ja79]
    C. Jarlskog, Gauge Theories in New Phenomena in Lepton Hadron Physics, eds. D.E.C. Fries and J. Wess (New York, London, 1979) p. 1.Google Scholar
  51. [Ja85]
    C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039 andCrossRefADSGoogle Scholar
  52. [Ja85a]
    C. Jarlskog, Z. Phys. C29 (1985) 491.ADSGoogle Scholar
  53. [Ki84]
    T. Kinoshita, B. Nižić and Y. Okamoto, Phys. Rev. Lett. 52 (1984) 717.CrossRefADSGoogle Scholar
  54. [Ki85]
    T. Kinoshita and V.W. Hughes, Comments Nucl. Part. Phys. 14 (1985) 341.Google Scholar
  55. [Ko73]
    M. Kobayshi and K. Maskawa, Prog. Theor. Phys. 49 (1973) 652.CrossRefADSGoogle Scholar
  56. [Kr79]
    M. Krammer and H. Krasemann, Quarkonia in Quarks and Leptons, Acta Physica Austriaca, Suppl. XXI, ed. P. Urban (Wien, New York, 1979) p. 259.Google Scholar
  57. [LEP92]
    The LEP collaborations, Phys. Lett. B276 (1992) 247.Google Scholar
  58. [Le93]
    W.C. Leung et al., Phys. Lett. B317 (1993) 655.ADSGoogle Scholar
  59. [Li78]
    D.B. Lichtenberg, Unitary Symmetry and Elementary Particles, (Academic Press, New York, 1978).Google Scholar
  60. [PDG00]
    D.E. Groom et al. (Particle Data Group), Eur. Phys. J. C15 (2000) 1.Google Scholar
  61. [Sa68]
    A. Salam, Weak and Electromagnetic Interactions in Elementary Particle Theory, ed. N. Svartholm (Stockholm, 1968) p. 367.Google Scholar
  62. [Sc49]
    J. Schwinger, Phys. Rev. 76 (1949) 790.CrossRefzbMATHADSMathSciNetGoogle Scholar
  63. [Sh79]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147 (1979) 385, 448, and 519.ADSGoogle Scholar
  64. [Ta75]
    R.E. Taylor, Inelastic Electron-Nucl.eon Scattering Experiments at SLAC in Proceedings 1977 International Symposium on Lepton and Photon Interactions at High Energies, ed. W.T. Kirk (Stanford, 1975) p. 679.Google Scholar
  65. [Th53]
    W. Thirring, Helv. Phys. Acta 26 (1953) 33.zbMATHMathSciNetGoogle Scholar
  66. [tH85]
    G.’t Hooft, Nucl. Phys. B254 (1985) 11.CrossRefADSGoogle Scholar
  67. [We29]
    H. Weyl, Z. Phys. 56 (1929) 330.Google Scholar
  68. [We67]
    S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.CrossRefADSGoogle Scholar
  69. [We95]
    S. Weinberg, The Quantum Theory of Fields, Vol. 1 and 2, (Cambridge University Press, Cambridge, 1995).Google Scholar
  70. [Wi39]
    E. Wigner, Ann. Math. 40 (1939) 51.CrossRefMathSciNetGoogle Scholar
  71. [Zw64]
    G. Zweig, CERN-TH 401 and 412 (1964) (unpublished).Google Scholar

Copyright information

© B. G. Teubner Stuttgart/Leipzig/Wiesbaden 2001

Authors and Affiliations

  • Manfred Böhm
    • 1
  • Ansgar Denner
    • 2
  • Hans Joos
    • 3
  1. 1.Universität WürzburgGermany
  2. 2.Paul Scherrer Institut VilligenSwitzerland
  3. 3.DESY HamburgGermany

Personalised recommendations