Skip to main content

Lichtleitfasern

  • Chapter
  • 1951 Accesses

Zusammenfassung

In den vorangegangenen Kapiteln sind bereits mehrere Aspekte behandelt worden. Ein Überblick zur historischen Entwicklung und zu den Eigenschaften von Fasern ist in Kapitel 1.4 enthalten. Das Bild 1.6 erläutert die drei Faser-Haupttypen, nämlich Stufenindex-Fasern, Gradientenfasern und Monomode-Fasern, die meist aus Quarzglas (SiO2) hergestellt werden. Ferner werden die für Massenanwendungen interessanten Plastik-Fasern behandelt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Börner, M., Trommer, G.: Lichtwellenleiter. Teubner Studienskripten, B. G. Teubner, Stuttgart 1989.

    Google Scholar 

  2. Geckeler, S.: Lichtwellenleiter für die optische Nachrichtenübertragung. 3. Aufl., Springer-Verlag, Berlin 1990.

    Book  Google Scholar 

  3. Hecht, J.: Understanding fiber optics. 2nd ed., Sams Publishing, Indianapolis 1993.

    Google Scholar 

  4. Bélanger, P.-A. Optical fiber theory. World Scientific. Singapore 1993.

    Google Scholar 

  5. Sneyder, A.W., Love, J.D.: Optical waveguide theory. Chapman and Hall, London 1998.

    Google Scholar 

  6. Cancellieri, G.: Single-mode optical fiber measurement; Characterization and sensing. Artech House, Inc., Boston 1993.

    Google Scholar 

  7. Grau, G., Freude, W.: Optische Nachrichtentechnik, 3. Aufl., Springer-Verlag, Berlin 1991.

    Google Scholar 

  8. Online: www.airliquide.com/en/business/products/gases/gasdata/ index.asp?GasID=60.

    Google Scholar 

  9. Online: www.corning.com.

    Google Scholar 

  10. Zagari, J., Argyros, A., Issa, N.A., Barton, G., Henry, G. Large, M.C.J., Poladin, L., Eijkelenborg, M.A.V.: Small-core single-mode microstructured polymer optical fiber with large external diameter. Optics Letters 29 (April 2004) 818–820.

    Article  Google Scholar 

  11. Daum, W., Krauser, J., Zamzow, J., Ziemann, O.: POF-Polymer optical fibers for data communication. Springer-Verlag, Berlin 2002.

    Google Scholar 

  12. Inada, K., Ed.: Special issue on fiber, cable, and splicing technology. J. Lightw. Techn., LT-4 (Aug. 1986), 955.

    Google Scholar 

  13. Tokiwa, H., Mimura, Y.: Ultralow-loss fluoride-glass single-mode fiber design. J. Lightw. Techn., LT-4 (Aug. 1986), 1266–1266.

    Google Scholar 

  14. Jeunhomme, L.B.: Single-mode fiber optics: Principles and applications, 2nd Ed. Marcel Dekker, New York 1990.

    Google Scholar 

  15. Noda, J., Okamoto, K., Sasaki, Y.: Polarization-maintaining fibers and their applications. J. Lightw. Techn., LT-4 (Aug. 1986), 1071–1089.

    Article  Google Scholar 

  16. Jablonowski, D.P.: Fiber manufature at AT&T with the MCVD-process. J. Lightw. Techn., LT-4 (Aug. 1986), 1071–1089.

    Google Scholar 

  17. Gustedt, D. Wiesner, W.: Fiberoptik Übertragungstechnik. Franzis’ Verlag, Poing 1998.

    Google Scholar 

  18. Jahns, J.: Photonik — Grundlagen, Komponenten und Systeme. Oldenbourg-Verlag, München 2001.

    Book  Google Scholar 

  19. Kapron, F.P., Keck, D.B., Mauer, R.D.: Radiation losses in glass optical waveguides. Appl. Phys. Lett. 17 (1970) 423–425.

    Article  Google Scholar 

  20. Ainslie, B.J., Day, C.R.: A review of single-mode fibers with modified dispersion characteristics. J. Lightw. Techn., LT-4 (Aug. 1986), 967–979.

    Article  Google Scholar 

  21. Schiffner, G., Schneider, H., Schöner, G.: Double-core single-mode optical fiber as directional coupler. Appl. Phys. 23 (1980) 41–45.

    Article  Google Scholar 

  22. Voges, E., Petermann, K., Eds.: Optische Kommunikationstechnik. Springer-Verlag, Berlin 2002.

    Google Scholar 

  23. Gloge, D., Marcatili, E.A.: Multimode theory of graded-core fibers. Bell Syst. Techn. J. 52 (1973) 1563–1578.

    Google Scholar 

  24. Weinert, C.M., Ludwig, R., Pieper, H.W. Weber, H.G., Breuer, D., Petermann, K., Küppers, F.; 40 Gb/s and 4 × 40 Gb/s TDM/WDM standard fiber transmission. IEEE J. Lightw. Techn. 17 (1999), 2276–2284.

    Article  Google Scholar 

  25. Sahara, A., Inui, T., Komukai, T., Kubota, H., Nakazawa, M.: 40-Gb/s RZ transmission over a transoceanic distance in a dispersion managed standard fiber using a modified inline synchronous modulation method. IEEE J. Lightw. Techn. 18 (2000), 1364–1373.

    Article  Google Scholar 

  26. Ooi, H., Nakamura, K., Akiyama, Y., Takahara, T., Terahara, T., Kawahata, Y., Isono, H., Ishikawa, G.: 40-Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators. IEEE J. Lightw. Techn. 20 (2002), 2196–2203.

    Article  Google Scholar 

  27. Turkiewicz, J.P., Tangdiongga, E., Lehmann, G., Rohde, H., Schairer, W., Zhou, Y.R., Sikora, E.S.R., Lord, A., Payne, D.B., Khoe, G.-D., de Waardt, H.: 160 Gb/s OTDM networking using deployed fiber. IEEE J. Lightw. Techn. 23 (2005), 225–235.

    Article  Google Scholar 

  28. Lima Jr., I.T., Lima, A.O., Biondini, G., Menyuk, C.R., Kath, W.L.: A comparative study of single-section polarization-mode dispersion compensators. IEEE J. Lightw. Techn. 22 (2004), 1023–1032.

    Article  Google Scholar 

  29. Zubita, J., Arrue, J.: Plastic optical fibers: An introduction to their technological processes and applications. Optical Fiber Technology 7 (2001), 101–140. Online: www.idealibarary.com.

    Article  Google Scholar 

  30. Poli, F., Cucinotta, S., Selleri, S., Bouk, A.H.: Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers. IEEE Photonic Techn. Lett. 16 (April 2004), 1065–1067.

    Article  Google Scholar 

  31. Schuh, R.E., Shan, X., Siddiqui, A.S.: Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters. IEEE J. Lightw. Techn. 16 (1998) 1583–1588.

    Article  Google Scholar 

  32. Noé, R., Sandel, D., Mirovda, V.: PMD in high-bit-rate transmission and means for its mitigation. IEEE J. Sel. Topics in Quantum Electronics, 10 (2004), 341–355.

    Article  Google Scholar 

  33. Winterling, P.: Optische Leistungsüberwachung in photonischen Netzen. NTZ 58 (Jan. 2005), 20–23.

    Google Scholar 

  34. Online: www.itu.int/home.

    Google Scholar 

  35. Online: www.iec.ch.

    Google Scholar 

  36. Online: www.tiaonline.org.

    Google Scholar 

  37. Online: www.telcordia.com.

    Google Scholar 

  38. Hubmann, H.P.: LWL-Praxis — Einführung in die Praxis der Lichtwellenleitertechnik. Firmenschrift, TS-Optoelektronik, München 1998.

    Google Scholar 

  39. Schild, A., Rein, H.-M., Müllrich, J., Altenhain, L., Blank, J., Schrödinger, K.: High-gain transimpedance amplifier array for a 12 × 10 Gb/s parallel optical-fiber link. IEEE J. Solid-state circuits, 38 (Jan. 2003) 4–12.

    Article  Google Scholar 

  40. Saleh, B.E.A., Teich, M.C.: Fundamentals of photonics. J. Wiley & Sons, Inc., New York 1991.

    Book  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

Schiffner, G. (2005). Lichtleitfasern. In: Optische Nachrichtentechnik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-80061-9_11

Download citation

Publish with us

Policies and ethics