Skip to main content

Höherdimensionale Strukturen von Biomolekülen

  • Chapter
Algorithmische Grundlagen der Bioinformatik

Part of the book series: Leitfäden der Informatik ((XLINF))

  • 290 Accesses

Zusammenfassung

In den vorangegangenen Kapiteln haben wir uns fast ausschließlich mit der so genannten Primärstruktur, also der linearen Abfolge der elementaren Bausteine in den jeweils betrachteten Molekülen, befasst. Für die Funktion in einem Lebewesen ist demgegenüber aber die räumliche Struktur der Moleküle von entscheidender Bedeutung. Sie ermöglicht oder verhindert die Bindung an andere Moleküle und bestimmt auf diese Weise die eigentliche Funktion des Moleküls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  1. P. Clote und R. Backofen: Computational Molecular Biology - An Introduction. Wiley, 2000.

    MATH  Google Scholar 

  2. R. Durbin, S. Eddy, A. Krogh und G. Mitchinson: Biological Sequence Analysis - Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

    Book  MATH  Google Scholar 

  3. J. Setubal und J. Meidanis: Introduction to Computational Molecular Biology. PWS Publishing Company, 1997.

    Google Scholar 

  4. M. S. Waterman: Introduction to Computational Biology — Maps, Sequences and Genomes. Chapman & Hall/CRC, 1995.

    MATH  Google Scholar 

  5. M. Zuker und P. Stiegler: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acid Research 9, 1981, pp. 133–148.

    Article  Google Scholar 

  6. P. Baldi and S. Brunak: Bioinformatics - The Machine Learning Approach, 2. Auflage. MIT Press, 2001.

    MATH  Google Scholar 

  7. K. Lari and S. Young: The estimation of stochastic context-free grammars using the inside-outside algorithm. Computer Speech and Language 4, 1990, pp. 35–56.

    Article  Google Scholar 

  8. S. Eddy und R. Durbin: RNA sequence analysis using covariance models. Nucleic Acid Research 22 (11), 1994, pp. 2079–2088.

    Article  Google Scholar 

  9. J. E. Hoperoft, R. Motwani, und J D. Ullman: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley 2001, (2. Auflage). Deutsche Ausgabe: Einfiihrung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Pearson Studium, 2002.

    Google Scholar 

  10. J. Hromkovic: Algorithmische Konzepte der Informatik. Teubner, 2001.

    MATH  Google Scholar 

  11. Z. Wang, K. Zhang: RNA secondary structure prediction. In: T. Jiang, Y. Xu und M. Q. Zhang (Hrsg.): Current Topics in Computational Molecular Biology. MIT Press, 2002.

    Google Scholar 

  12. P. A. Evans: Algorithms and Complexity for Annotated Sequence Analysis. Dissertation, University of Victoria, Canada, 1999.

    Google Scholar 

  13. G-H. Lin, Z.-Z. Chen, T. Jiang and J. Wen: The longest common subsequence problem for sequences with nested arc annotations (extended abstract). Proceedings of the 28th International Colloquium on Automata, Languages and Programming (ICALP’Ol), Springer LNCS 2076, 2001, pp. 444–455.

    MathSciNet  Google Scholar 

  14. T. Jiang, G.-H. Lin, B. Ma und K. Zhang: The longest common subsequence problem for arc-annotated sequences. Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching (CPM 2000), Springer LNCS 1848, 2000, pp. 154–165.

    MathSciNet  Google Scholar 

  15. D. Goldman, S. Istrail and C. H. Papadimitriou: Algorithmic aspects of protein structure similarity (extended abstract). Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS’99), 1999, pp. 512–521.

    Google Scholar 

  16. L. Goldstein and M.S. Waterman: Mapping DNA by stochastic relaxation. Advances in Applied Mathematics 8, 1987, pp. 194–207.

    MATH  MathSciNet  Google Scholar 

  17. P. A. Evans: Algorithms and Complexity for Annotated Sequence Analysis. Dissertation, University of Victoria, Canada, 1999.

    Google Scholar 

  18. R. G. Downey und M. R. Fellows: Parameterized Complexity. Springer 1999.

    Book  Google Scholar 

  19. J. Hromkovie: Algorithrnics for Hard Problems, 2. Auflage. Springer, 2003.

    Google Scholar 

  20. P. Clote und R. Backofen: Computational Molecular Biology - An Introduction. Wiley, 2000.

    MATH  Google Scholar 

  21. J. Setubal und J. Meidanis: Introduction to Computational Molecular Biology. PWS Publishing Company, 1997.

    Google Scholar 

  22. C. N. S. Pedersen: Algorithms in Computational Biology. Dissertation, BRICS, 2000.

    Google Scholar 

  23. P. Karlson, D. Doenecke und J. Koolman: Kurzes Lehrbuch der Biochemie für Mediziner und Naturwissenschaftler. Thieme Verlag, 14. Auflage 1994.

    Google Scholar 

  24. C. B. Anfinsen, E. Haber, F.H. White: The kinetics of the formation of native ribonuclease during oxidation of the reduced polypeptide domain. Proceedings of the National Academy of Science of the USA, 47, 1961, pp. 1309–1314.

    Article  Google Scholar 

  25. K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas, und H. S. Chan: Principles of protein folding–a perspective from simple exact models. Protein Science, 4, 1995, pp. 561–602.

    Article  Google Scholar 

  26. B. Berger and T. Leighton: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. Journal of Computational Biology, 5, 1998, pp. 27–40.

    Article  Google Scholar 

  27. P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni und M. Yannakakis: On the complexity of protein folding. Journal of Computational Biology, 5, 1998, pp. 423–465.

    Article  Google Scholar 

  28. W. E. Hart and S. C. Istrail: Fast protein folding in the hydrophobic-hydrophilic model within three-eighths of optimal. Journal of Computational Biology, 3 (1), 1996, pp. 5396.

    Article  Google Scholar 

  29. A. Newman: A New Algorithm for Protein Folding in the HP Model. Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02), 2002, pp. 876–884.

    Google Scholar 

  30. D.T. Jones, W.R. Taylor und J.M. Thornton: A new approach to protein fold recognition. Nature, 358, 1992, pp. 86–89.

    Article  Google Scholar 

  31. R. H. Lathrop: The protein threading problem with sequence amino acid interaction preferences is NP-complete. Protein Engineering 7 (9), 1994, pp. 1059–1068.

    Article  Google Scholar 

  32. R. H. Lathrop and T. F. Smith: Global optimum protein threading with gapped alignment and empirical pair score functions. Journal of Molecular Biology 255, 1996, pp. 641–665.

    Article  Google Scholar 

  33. P. Clote und R. Backofen: Computational Molecular Biology - An Introduction. Wiley, 2000.

    MATH  Google Scholar 

  34. T. Akutsu and S. Miyano: On the approximation of protein threading. Theoretical Computer Science, 210, 1999, pp. 261–275.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

Böckenhauer, HJ., Bongartz, D. (2003). Höherdimensionale Strukturen von Biomolekülen. In: Algorithmische Grundlagen der Bioinformatik. Leitfäden der Informatik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-80043-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-80043-5_12

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-00398-4

  • Online ISBN: 978-3-322-80043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics