Advertisement

Literaturverzeichnis

  • Ekkenhard Krätzel
Chapter
  • 83 Downloads
Part of the Teubner-Texte zur Mathematik book series (TTZM, volume 139)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    N. G. Bakhoom. Asymptotic expansions of the function \({f_k}\left( x \right) = {\text{ }}\int_0^\infty {{e^{ - {u^k} + xu}}du} \) du . Proc. London Math. Soc. (2),35: 83–100, 1933.Google Scholar
  2. [2]
    H. Bateman and A. Erdelyi. Higher Transcendental Functions I. Mc Graw-Hill Book Company, Inc., New York, Toronto, London, 1953.zbMATHGoogle Scholar
  3. [3]
    H. Bateman and A. Erdelyi. Higher Transcendental Functions II. Mc Graw-Hill Book Company, Inc., New York, Toronto, London, 1953.zbMATHGoogle Scholar
  4. [4]
    V. Bentkus and F. Götze. On the lattice point problem for ellipsoid. Acta Arith.,2: 101–125, 1997.Google Scholar
  5. [5]
    T. Bonnesen and W. Fenchel. Theorie der konvexen Körper. Springer-Verlag, Berlin, 1934.zbMATHGoogle Scholar
  6. [6]
    J. W. S. Cassels. An Introduction to Diophantine Approximation. Cambridge University Press, Cambridge, 1965.Google Scholar
  7. [7]
    J. W. S. Cassels. An Introduction to the Geometry of Numbers. Springer-Verlag, Berlin-Heidelberg-New York, 1971.zbMATHGoogle Scholar
  8. [8]
    F. Chamizo. Lattice points in bodies of revolution. Acta Arith.,85: 265–277, 1998.zbMATHMathSciNetGoogle Scholar
  9. [9]
    F. Chamizo and H. Iwaniec. On the sphere problem. Rev. Mat. Iberoamericana, 11: 417–429, 1995.zbMATHMathSciNetGoogle Scholar
  10. [10]
    R. Cooper. The behaviour of certain series associated with limiting cases of elliptic theta-functions. Proc. London Math. Soc. (2),27: 410–426, 1928.zbMATHCrossRefGoogle Scholar
  11. [11]
    E. T. Copson. Asymptotic Expansions. At the University Press,Cambridge, 1965.Google Scholar
  12. [12]
    Y. Colin de Verdiere. Normbres de points dans une famille homothetique de domaines de Rte. Ann. Sci. Ecole Norm. Sup.,10: 559–576, 1977.zbMATHMathSciNetGoogle Scholar
  13. [13]
    G. Doetsch. Handbuch der Laplace-Transformation I. Birkhäuser, Basel, 1950.zbMATHGoogle Scholar
  14. [14]
    G. Doetsch. Handbuch der Laplace-Transformation II. Birkhäuser, Basel, 1953.Google Scholar
  15. [15]
    G. Doetsch. Handbuch der Laplace-Transformation III. Birkhäuser, Basel, 1956.zbMATHGoogle Scholar
  16. [16]
    F. Fricker. Einführung in die Gitterpunktlehre. Birkhäuser, Basel-BostonStuttgart, 1982.zbMATHGoogle Scholar
  17. [17]
    S. W. Graham and G. Kolesnik. Van der Corput’s Method of Exponential Sums. London Math. Soc., Lecture Note Series 126, 1991.Google Scholar
  18. [18]
    P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland, Amsterdam, 1987.zbMATHGoogle Scholar
  19. [19]
    P. M. Gruber and J. M. Wills. Handbook of Convex Geometry. North-Holland, Amsterdam-New York-Tokyo, 1993.Google Scholar
  20. [20]
    K. Haberland. Ueber die Anzahl von Gitterpunkten in konvexen Gebieten. Preprint,1993.Google Scholar
  21. [21]
    H. Hadwiger. Altes und Neues über konvexe Körper. Birkhäuser, Basel, 1955.zbMATHGoogle Scholar
  22. [22]
    H. Hadwiger and J. M. Wills. Gitterpunktanzahl konvexer Rotationskörper. Math. Ann., 208: 221–232, 1974.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. H. Hardy and J. E. Littlewood. Some problems of Diophantine approximation ii. the trigonometrical series associated with the elliptic 29-functions. Acta Math.,37: 193–238, 1914.MathSciNetCrossRefGoogle Scholar
  24. [24]
    H. Hasse. Vorlesungen über Zahlentheorie. Springer-Verlag, Berlin-GöttingenHeidelberg, 1950.zbMATHGoogle Scholar
  25. [25]
    D. R. Heath-Brown. Weyl’s inequality, Hua’s inequality and Waring’s problem. J. London Math. Soc., 38: 216–230, 1988.zbMATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    D. R. Heath-Brown. Lattice points in the sphere. Proc. Number Theory Conf. Zakopane, Poland, 1997.Google Scholar
  27. [27]
    D. R. Heath-Brown and S. J. Patterson. The distribution of Kummer sums at prime arguments. J. Reine Angew. Math., 310: 111–136, 1979.zbMATHMathSciNetGoogle Scholar
  28. [28]
    E. Hlawka. Ueber die Zetafunktion konvexer Körper. Monatsh. Math., 54: 100–107, 1950.zbMATHMathSciNetCrossRefGoogle Scholar
  29. [29]
    E. Hlawka. Ueber Integrale auf konvexen Körpern I. Monatsh. Math.,54: 1–36, 1950.MathSciNetCrossRefGoogle Scholar
  30. [30]
    E. Hlawka. Ueber Integrale auf konvexen Körpern II. Monatsh. Math., 54: 81–99, 1950.MathSciNetCrossRefGoogle Scholar
  31. [31]
    M. N. Huxley. Area,Lattice Points and Exponential Sums. Clarendon Press, Oxford, 1996.Google Scholar
  32. [32]
    S. Iseki. The transformation formula for the Dedekind modular function and related functional equations. Duke Math. J., 24: 653–662, 1957.zbMATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    S. Iseki. A generalization of a functional equation related to the theory of partitions. Duke Math. J., 27: 96–110, 1960.MathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Karamata and M. Tomic. Sur une inegalite de Kusmin-Landau relative aux sommes trigonometriques et son application a la somme de Gauss. Publ. Inst. Math. Acad. Serbe Sci.,3: 207–218, 1950.MathSciNetGoogle Scholar
  35. [35]
    A. Khintchine. Kettenbrüche. Teubner, Leipzig, 1956.zbMATHGoogle Scholar
  36. [36]
    M. I. Knopp. Modular Functions in Analytic Number Theory. Markham Publishing Company, Chicago, 1970.zbMATHGoogle Scholar
  37. [37]
    J. F. Koksma. Diophantische Approximationen. Springer, Berlin, 1936.Google Scholar
  38. [38]
    N. M. Korobov. Exponential Sums and their Applications. Kluwer Academic Publishers, Dordrecht/Boston/London, 1992.zbMATHGoogle Scholar
  39. [39]
    E. Krätzel. Ein Reziprozitätsgesetz für eine Reihe über Bessel-Funktionen. Archiv Math.,16: 449–451, 1965.zbMATHCrossRefGoogle Scholar
  40. [40]
    E. Krätzel. Höhere Thetafunktionen I. Math. Nachr., 30: 17–32, 1965.CrossRefGoogle Scholar
  41. [41]
    E. Krätzel. Höhere Thetafunktionen II. Math. Nachr., 30: 33–46, 1965.MathSciNetCrossRefGoogle Scholar
  42. [42]
    E. Krätzel. Kubische und biquadratische Gaußsche Summen J. Reine Angew. Math., 228: 159–165, 1967.zbMATHMathSciNetCrossRefGoogle Scholar
  43. [43]
    E. Krätzel. Zur Frage der Produktentwicklung höherer Thetafunktionen. Math. Nachr., 71: 291–302, 1976.zbMATHMathSciNetCrossRefGoogle Scholar
  44. [44]
    E. Krätzel. Dedekindsche Funktionen und Summen I. Period. Math. Hungar., 12: 113–123, 1981.zbMATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    E. Krätzel. Dedekindsche Funktionen und Summen II. Period. Math. Hungar., 12: 163–179, 1981.MathSciNetCrossRefGoogle Scholar
  46. [46]
    E. Krätzel. Zahlentheorie. Dt. Verlag d. Wiss., Berlin, 1981.Google Scholar
  47. [47]
    E. Krätzel. Lattice Points. Dt. Verlag d. Wiss., Berlin und Kluwer Academic Publishers Dordrecht/Boston/London, 1988.Google Scholar
  48. [48]
    E. Krätzel. Double exponential sums Analysis,16: 109–123, 1996.zbMATHMathSciNetGoogle Scholar
  49. [49]
    E. Krätzel. Lattice points in large convex bodies: Analytic foundations. Proc. of the Conference on Analytic and Elementary Number Theory, Wien,pages 149–164, 1996.Google Scholar
  50. [50]
    E. Krätzel. Lattice points in three-dimensional large convex bodies. Math. Nachr., 2000.Google Scholar
  51. [51]
    E. Krätzel and W. G. Nowak. Lattice points in large convex bodies. Monatsh. Math., 112: 61–72, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  52. [52]
    E. Krätzel and W. G. Nowak. Lattice points in large convex bodies II. Acta Arith., 62: 285–295, 1992.zbMATHMathSciNetGoogle Scholar
  53. [53]
    W. Maier. Transformation der kubischen Thetafunktion. Math. Ann., 111: 183–196, 1935.MathSciNetCrossRefGoogle Scholar
  54. [54]
    H. Mellin. Eine Formel für den Logarithmus transcendenter Funktionen von endlichem Geschlecht. Acta Math., 25: 165–183, 1901.zbMATHMathSciNetCrossRefGoogle Scholar
  55. [55]
    H. Menzer. Transformation spezieller Dirichletscher Reihen I. Math. Nachr., 73: 297–303, 1976.zbMATHMathSciNetCrossRefGoogle Scholar
  56. [56]
    H. Menzer. Transformation spezieller Dirichletscher Reihen II. Math. Nachr., 73: 305–313, 1976.zbMATHMathSciNetCrossRefGoogle Scholar
  57. [57]
    L. J. Mordell. On a simple summation of the series Th. Messenger of Math., 48: 54–56, 1918.Google Scholar
  58. [58]
    L. J. Mordell. On the Kusmin-Landau inequality for exponential sums. Acta Arith.,4: 3–9, 1958.zbMATHMathSciNetGoogle Scholar
  59. [59]
    W. Müller. Lattice points in large convex bodies. Monatsh. Math., 2000.Google Scholar
  60. [60]
    W. Müller and W. G. Nowak. On lattice points in planar domains. Math. J. Okayama University,27: 173–184, 1985.zbMATHGoogle Scholar
  61. [61]
    W. G. Nowak. Zur Gitterpunktlehre der euklidischen Ebene. Indagationes math.,46: 209–223, 1984.zbMATHGoogle Scholar
  62. [62]
    W. G. Nowak. On the lattice rest of a convex body in Rs. Arch. Math., 45: 284–288, 1985.zbMATHCrossRefGoogle Scholar
  63. [63]
    W. G. Nowak. Zur Gitterpunktlehre der euklidischen Ebene II. Mitteilungen d. Wiener Akademie d. Wiss.,pages 31–37, 1985.Google Scholar
  64. [64]
    W. G. Nowak. On the lattice rest of a convex body in RS II. Arch. Math., 47: 232–237, 1986.zbMATHCrossRefGoogle Scholar
  65. [65]
    W. G. Nowak. Topics in lattice point theory I (japanisch). Sugaka Seminar, 291: 79–89, 1986.Google Scholar
  66. [66]
    W. G. Nowak. On the lattice rest of a convex body in RS III. Czechosl. Math. J.,41: 359–367, 1991.Google Scholar
  67. [67]
    H. Pieper. Variationen über ein zahlentheoretisches Thema von C. F. Gauss. Dt. Verlag d. Wiss., Berlin, 1978.Google Scholar
  68. [68]
    L. P. Postnikova. Trigonometrische Summen und die Theorie der Kongruenzen nach einem Primzahlmodul (russ.). Pädagogisches Institut Moskau, 1973.Google Scholar
  69. [69]
    H. Rademacher. Topics in Analytic Number Theory. Springer Berlin, Heidelberg, New York, 1973.zbMATHGoogle Scholar
  70. [70]
    B. Randol. On the Fourier transform of the indicator function of a planar set. Trans. Amer. Math. Soc., 139: 271–278, 1969.zbMATHMathSciNetGoogle Scholar
  71. [71]
    P. G. Schmidt. Zur Anzahl unitärer Faktoren abelscher Gruppen. Acta Arith.,64: 237–248, 1993.zbMATHMathSciNetGoogle Scholar
  72. [72]
    W. M. Schmidt. Diophantine Approximations. Springer-Verlag, BerlinHeidelberg-New York, 1980.Google Scholar
  73. [73]
    M. Tarnopolska-Weiss. On the number of lattice points in planar domains. Proc. Am. Math. Soc.,69: 308–311, 1978.MathSciNetCrossRefGoogle Scholar
  74. [74]
    E. C. Titchmarsh and D. R. Heath-Brown. The Theory of the Riemann Zeta-Function. At the Clarendon Press, Oxford, 1986.Google Scholar
  75. [75]
    J. D. Vaaler. Some extremal problems in Fourier analysis. Bull. Am. Math. Soc.,12: 183–216, 1985.zbMATHMathSciNetCrossRefGoogle Scholar
  76. [76]
    A. Walfisz. Weylsche Exponentialsummen in der neueren Zahlentheorie. Deutscher Verlag der Wissenschaften, Berlin, 1963.zbMATHGoogle Scholar
  77. [77]
    E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. At the University Press, Cambridge, 1962.zbMATHGoogle Scholar
  78. [78]
    J. M. Wills. Zur Gitterpunktanzahl konvexer Mengen. Elem. Math., 28: 57–63, 1973.zbMATHMathSciNetGoogle Scholar
  79. [79]
    J. M. Wright. Asymptotic partition formulae III. Acta Math.,63: 143–191, 1934.MathSciNetCrossRefGoogle Scholar

Copyright information

© B. G. Teubner Gmbh, Stuttgart/Leipzig/Wiesbaden 2000

Authors and Affiliations

  • Ekkenhard Krätzel
    • 1
  1. 1.Universität WienWienÖsterreich

Personalised recommendations