Skip to main content

Abstract

The paper presents the results of a comparative study of the artifact subspace re-construction (ASR) method and two other popular methods dedicated to correct EEG artifacts: independent component analysis (ICA) and principal component analysis (PCA). The comparison is based on automatic rejection of EEG signal epochs performed on a dataset of motor imagery data. ANOVA results show a significantly better level of artifact correction for the ASR method. What is more, the ASR method does not cause serious signal loss compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullen, T., Kothe, C., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., Cauwenberghs, G., Jung, T.P.: Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG. In: 35th Annual International Conference on Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 2184–2187 (2013)

    Google Scholar 

  2. Weiss, S.A., Asadi-Pooya, A.A., Vangala, S., Moy, S., Wyeth, D.H., Orosz, I., Chang, E.: AR2, a novel automatic muscle artifact reduction software method for ictal EEG interpretation: Validation and comparison of performance with commercially available software. F1000 Research 6 (2017)

    Google Scholar 

  3. Kusumandari, D.E., Fakhrurroja, H., Turnip, A., Hutagalung, S.S., Kumbara, B., Simarmata, J.: Removal of EOG artifacts: comparison of ICA algorithm from recording EEG. In: 2nd International Conference on Technology, Informatics, Management, Engineering, and Environment (TIME-E), pp. 335–339 (2014)

    Google Scholar 

  4. Frolich, L., Dowding, I.: Removal of muscular artifacts in EEG signals: a comparison of linear decomposition methods. Brain informatics, pp. 1–10 (2018)

    Google Scholar 

  5. Berg, P., Scherg, M.: A multiple source approach to the correction of eye artifacts. Electroencephalogr. Clin. Neurophysiol. 90, 229–241 (1994)

    Article  Google Scholar 

  6. Croft, R.J., Barry, R.J.: Removal of ocular artifact from the EEG: a review. Neurophysiol. Clin. 30, 5–19 (2000)

    Article  Google Scholar 

  7. Joyce, C.A., Gorodnitsky, I.F., Kutas, M.: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41, 313–325 (2004)

    Article  Google Scholar 

  8. Liu, T., Yao, D.: Removal of the ocular artifacts from EEG data using a cascaded spatiotemporal processing. Comput. Methods Progr. Biomed. 83, 95–103 (2006)

    Article  Google Scholar 

  9. Qin, Y., Xu, P., Yao, D.: A comparative study of different references for EEG default mode network: the use of the infinity reference. Clin. Neurophysiol. 121, 1981–1991 (2010)

    Article  Google Scholar 

  10. Delorme, A., Sejnowski, T., Makeig, S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage. 34, 1443–1449 (2007)

    Article  Google Scholar 

  11. DeClercq, W., Vergult, A., Vanrumste, B., VanPaesschen, W., VanHuffel, S.: Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans. Biomed. Eng. 53, 2583–2587 (2006)

    Article  Google Scholar 

  12. Berg, P., Scherg, M.: Dipole modelling of eye activity and its application to the removal of eye artefacts from the EEG and MEG. Clin. Phys. Physiol. Meas. 12, 49 (1991)

    Article  Google Scholar 

  13. Goh, S.K., Abbass, H.A., Tan, K.C., Al-Mamun, A., Wang, C., Guan, C.: Automatic EEG Artifact Removal Techniques by Detecting Influential Independent Components. IEEE Trans. Emerg. Topics Comput. Intell. 1(4), 270–279 (2017)

    Article  Google Scholar 

  14. Uriguen, J.A., Garcia-Zapirain, B.: EEG artifact removal-state of- the-art and guidelines. J. Neural Eng. 12(3), 031001 (2015)

    Article  Google Scholar 

  15. Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput. 11(2), 417–441 (1999)

    Article  Google Scholar 

  16. Wang, Z., Peng, X., TieJun, L., Yin, T., Xu, L., DeZhong, Y.: Robust removal of ocular artifacts by combining Independent Component Analysis and system identification. Biomed. Signal Process. Control 10, 250–259 (2014)

    Article  Google Scholar 

  17. Raduntz, T., Scouten, J., Hochmuth, O., Meffert, B.: EEG artifact elimination by extraction of ICA-component features using image processing algorithms. J. Neurosci. Methods 243, 84–93 (2015)

    Article  Google Scholar 

  18. Wallstrom, G., Kass, R., Miller, A., Cohn, J.F., Fox, N.A.: Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods. Int. J. Psychophysiol. 53(2), 105–119 (2004)

    Article  Google Scholar 

  19. Sweeney, K., Ward, T., McLoone, S.: Artifact removal in physiological signals-Practices and possibilities. IEEE Trans. Inf. Tech. Biomed. 16(3), 488–500 (2012)

    Article  Google Scholar 

  20. Gwin, J., Gramann, K., Makeig, S., Ferris, D.: Removal of movement artifact from high-density EEG recorded during walking and running. J. Neurophy. 103, 3526–3534 (2010)

    Article  Google Scholar 

  21. Kilicarslan, A., Grossman, R.G., Contreras-Vidal, J.L.: A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. J. Neural Eng. 13(2), 026013 (2016)

    Article  Google Scholar 

  22. Bulea, T.C., Prasad, S., Kilicarslan, A., Contreras-Vidal, J.L.: Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution. Front. Neurosci. 8, 376 (2014)

    Article  Google Scholar 

  23. Bulea, T.C., Kim, J., Damiano, D.L., Stanley, C.J., Park, H.S.: Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking. Front. Human Neurosci. 9, 247 (2015)

    Article  Google Scholar 

  24. Le, Q.V., Karpenko, A., Ngiam, J., Ng, A.Y.: ICA with reconstruction cost for efficient overcomplete feature learning. NIPS, pp. 1017–1025 (2011)

    Google Scholar 

  25. Akhtar, M., Jung, T.-P., Makeig, S., Cauwenberghs, G.: Recursive independent component analysis for online blind source separation. IEEE Int. Symp. Circuits Syst. 6, 2813–2816 (2012)

    Google Scholar 

  26. Zapala, D., Francuz, P., Zapala, E., Kopis, N., Wierzgala, P., Augustynowicz, P., Kolodziej, M.: The impact of different visual feedbacks in user training on motor imagery control in BCI. In: Applied Psychophysiology and Biofeedback, pp. 1–13 (2017)

    Google Scholar 

  27. Majkowski, A., Kolodziej, M., Zapala, D., Tarnowski, P., Francuz, P., Rak, R.J., Oskwarek, L.: Selection of EEG signal features for ERD/ERS classification using genetic algorithms. In: 18th International Conference on Computational Problems of Electrical Engineering (CPEE), pp. 1–4 (2017)

    Google Scholar 

  28. Zapala, D., Zabielska-Mendyk, E., Cudo, A., Krzysztofiak, A., Augustynowicz, P., Francuz, P.: Short-term kinesthetic training for sensorimotor rhythms: Effects in experts and amateurs. J. Mot. Behav. 47(4), 312–318 (2015)

    Article  Google Scholar 

  29. Dunnett, C.W.: A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50(272), 1096–1121 (1955)

    Article  Google Scholar 

Download references

Acknowledgement

In order to simplify the replication of our results, we have placed a data sets used for analysis in a public repository https://github.com/lareieeg/EEGdata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Plechawska-Wojcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plechawska-Wojcik, M., Kaczorowska, M., Zapala, D. (2019). The Artifact Subspace Reconstruction (ASR) for EEG Signal Correction. A Comparative Study. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018. ISAT 2018. Advances in Intelligent Systems and Computing, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-99996-8_12

Download citation

Publish with us

Policies and ethics