Skip to main content

Abstract

In presented paper, an analysis of model order reduction (MOR) techniques applied to steel beams filled with a composite material is presented. This research concerns specific construction solutions used in technological machines. The analyzes concern three reduction methods: Guyan reduction also referred as static condensation, Craig-Bampton reduction and Kammer reduction. These techniques are applied to matrix equations describing steel beams filled with a composite material model, established by the finite element method (FEM). The article contains information about preparation of the full model and model parameters identification process. To verify FEM model quality its results are compared to experimental modal analysis results. The analysis compares and contrasts the MOR techniques by considering the nature of the individual algorithms and analyzing results of numerical example. The comparison of reduced models computational time at subsequent stages have also been made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoulas, A.C.: Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics, Siam (2005)

    Book  Google Scholar 

  2. Besselink, B., Tabak, U., Lutowska, A., Van De Wouw, N., Nijmeijer, H., Rixen, D.J., Schilders, W.H.A.: A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. J. Sound Vib. 332(19), 4403–4422 (2013)

    Article  Google Scholar 

  3. Bonotto, M., Cenedese, A., Bettini, P.: Krylov subspace methods for model order reduction in computational electromagnetics. IFAC-PapersOnLine 50(1), 6355–6360 (2017)

    Article  Google Scholar 

  4. Chen, G., Li, D., Zhou, Q., Da Ronch, A., Li, Y.: Efficient aeroelastic reduced order model with global structural modifications. Aerosp. Sci. Technol. 76, 1–13 (2018)

    Article  Google Scholar 

  5. Craig, R.R.: Coupling of substructures for dynamic analysis: an overview. In: Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Atlanta, USA (2000)

    Google Scholar 

  6. Craig, R., Bampton, M.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    Article  Google Scholar 

  7. Flodén, O., Sandberg, G., Persson, K.: Reduced order modelling of elastomeric vibration isolators in dynamic substructuring. Eng. Struct. 155, 102–114 (2018)

    Article  Google Scholar 

  8. Gouda, M.M., Danaher, S., Underwood, C.P.: Building thermal model reduction using nonlinear constrained optimization. Build. Environ. 37(12), 1255–1265 (2002)

    Article  Google Scholar 

  9. Guyan, R.J.: Reduction of stiffness and mass matrices. AIAA J. 3(2), 380 (1965)

    Google Scholar 

  10. Kammer, D.C.: Test-analysis model development using an exact modal reduction. Int. J. Anal. Exp. Modal Anal. 2(4), 174–179 (1987)

    Google Scholar 

  11. Klerk, D.D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review and classification of techniques. AIAA J. 46(5), 1169–1181 (2008)

    Article  Google Scholar 

  12. Pagliuca, G., Timme, S.: Model reduction for flight dynamics simulations using computational fluid dynamics. Aerosp. Sci. Technol. 69, 15–26 (2017)

    Article  Google Scholar 

  13. Pajor, M., Marchelek, K., Powałka, B.: Method of reducing the number of DOF in the machine tool-cutting process system from the point of view of vibrostability analysis. Modal Anal. 8(4), 481–492 (2002)

    Article  Google Scholar 

  14. Rösner, M., Lammering, R., Friedrich, R.: Dynamic modeling and model order reduction of compliant mechanisms. Precis. Eng. 42, 85–92 (2015)

    Article  Google Scholar 

  15. Wijker, J.J.: Spacecraft structures, pp. 265–280. Springer, Heidelberg (2008)

    Google Scholar 

  16. Wittig, T., Schuhmann, R., Weiland, T.: Model order reduction for large systems in computational electromagnetics. Linear Algebra Appl. 415(2–3), 499–530 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by EU grant: “Light construction vertical lathe” POIR.04.01.02-00-0078/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Dunaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dunaj, P., Dolata, M., Berczyński, S. (2019). Model Order Reduction Adapted to Steel Beams Filled with a Composite Material. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018. ISAT 2018. Advances in Intelligent Systems and Computing, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-99996-8_1

Download citation

Publish with us

Policies and ethics