Advertisement

ALMM Solver - Idea of Algorithm Module

  • Edyta Kucharska
  • Krzysztof Ra̧czkaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)

Abstract

The aim of the paper is to propose architecture of algorithms module of IT tool, names Solver ALMM. It is framework for solving collective decision-making problems. The solver belongs to the group of applications based on specialized problem model, which provides solutions (exact or approximate) for NP-hard of discrete optimization problems using artificial intelligence methods. It is based on the methodology of algebraic-logical meta-model of discrete decision processes. The article presents principles of cooperation Algorithm Module with the other components. Also hot spots as specific locations for SimOpt framework extension are presented.

Keywords

Artificial intelligence methods Collective decision-making problem Simulation Optimization Algebraic-logical meta-model Design patterns Hot spot 

Notes

Acknowledgements

This research is supported by Ministry of Science and Higher Education Republic of Poland, Contracts No.: 11.11.120.417 and 15.11.120.890.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Al-Tahat, K.S., Idris, S.B., Sembok, T.M.T., Yousof, M.: Using hot-spot-driven approach in the development of a framework for multimedia presentation on the Web. Framework 2(B1), A1 (2002)Google Scholar
  12. 12.
    Braga, R.T., Masiero, P.C.: Finding frameworks hot spots in pattern languages. J. Object Technol. 3(1), 123–142 (2004)CrossRefGoogle Scholar
  13. 13.
    Design, D.D.: Tackling complexity in the heart of software. Eric Evans. ISBN 978–0321125217 (2003)Google Scholar
  14. 14.
    Dudek-Dyduch, E.: Formalization and analysis of problems of discrete manufacturing processes. In: Scientific Bulletin of AGH UST. Automatics, vol. 54 (1990)Google Scholar
  15. 15.
    Dudek-Dyduch, E.: Learning-based algorithms in scheduling. J. Intell. Manuf. 11(2), 135–143 (2000)CrossRefGoogle Scholar
  16. 16.
    Dudek-Dyduch, E.: Algebraic logical meta-model of decision processes - new metaheuristics. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 541–554. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19324-3_48CrossRefGoogle Scholar
  17. 17.
    Dudek-Dyduch, E.: Modeling manufacturing processes with disturbances - a new method based on algebraic-logical meta-models. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 353–363. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19369-4_32CrossRefGoogle Scholar
  18. 18.
    Dudek-Dyduch, E., Dutkiewicz, L.: Substitution tasks method for discrete optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 419–430. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38610-7_39CrossRefGoogle Scholar
  19. 19.
    Dudek-Dyduch, E., Dyduch, T.: Learning algorithms for scheduling using knowledge based model. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 1091–1100. Springer, Heidelberg (2006).  https://doi.org/10.1007/11785231_114CrossRefGoogle Scholar
  20. 20.
    Dudek-Dyduch, E., Korzonek, S.: ALMM solver for combinatorial and discrete optimization problems – idea of problem model library. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS, vol. 9621, pp. 459–469. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49381-6_44CrossRefGoogle Scholar
  21. 21.
    Dudek-Dyduch, E., Kucharska, E.: Learning method for co-operation. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011. LNCS, vol. 6923, pp. 290–300. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23938-0_30CrossRefGoogle Scholar
  22. 22.
    Dudek-Dyduch, E., Kucharska, E., Dutkiewicz, L., Rączka, K.: ALMM solver - a tool for optimization problems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8468, pp. 328–338. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07176-3_29CrossRefGoogle Scholar
  23. 23.
    Dutkiewicz, L., Kucharska, E., Ra̧czka, K., Grobler-Dȩbska, K.: ST method-based algorithm for the supply routes for multilocation companies problem. In: Skulimowski, A.M.J., Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems: Recent Trends, Advances and Solutions. AISC, vol. 364, pp. 123–135. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-19090-7_10CrossRefGoogle Scholar
  24. 24.
    Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)Google Scholar
  25. 25.
    Grobler-Debska, K., Kucharska, E., Dudek-Dyduch, E.: Idea of switching algebraic-logical models in flow-shop scheduling problem with defects. In: 2013 18th International Conference on Methods and Models in Automation and Robotics, MMAR, pp. 532–537. IEEE (2013)Google Scholar
  26. 26.
    Grobler-Debska, K., Kucharska, E., Jagodzinski, M.: ALMM-based switching method for FSS problem with defects. In: 2014 19th International Conference on Methods and Models in Automation and Robotics, MMAR, pp. 814–819. IEEE (2014)Google Scholar
  27. 27.
    Groves, M.D.: AOP in.NET: Practical Aspect-Oriented Programming. Manning Publications Company, Shelter Island (2013)Google Scholar
  28. 28.
    Jurgens, D.: Survey on software engineering for scientific applications-reusable software, grid computing and application (2009)Google Scholar
  29. 29.
    Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0053381CrossRefGoogle Scholar
  30. 30.
    Kluza, K., Wisniewski, P.: Spreadsheet-based business process modeling. In: FedCSIS, pp. 1355–1358 (2016)Google Scholar
  31. 31.
    Korzonek, S., Dudek-Dyduch, E.: Component library of problem models for ALMM solver. J. Inf. Telecommun. 1(3), 224–240 (2017)Google Scholar
  32. 32.
    Kucharska, E., Dudek-Dyduch, E.: Extended learning method for designation of co-operation. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence XIV. LNCS, vol. 8615, pp. 136–157. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44509-9_7CrossRefGoogle Scholar
  33. 33.
    Kucharska, E., Grobler-Debska, K., Raczka, K.: Algebraic-logical meta-model based approach for scheduling manufacturing problem with defects removal. Adv. Mech. Eng. 9(4) (2017).  https://doi.org/10.1177/1687814017692291
  34. 34.
    Kucharska, E., Grobler-Dębska, K., Rączka, K.: ALMM-based methods for optimization makespan flow-shop problem with defects. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology – ISAT 2016 – Part I. AISC, vol. 521, pp. 41–53. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-46583-8_4CrossRefGoogle Scholar
  35. 35.
    Pree, W.: Hot-spot-driven framework development. Framework 2, B1 (1995)Google Scholar
  36. 36.
    Rączka, K., Dudek-Dyduch, E., Kucharska, E., Dutkiewicz, L.: ALMM solver: the idea and the architecture. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 504–514. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19369-4_45CrossRefGoogle Scholar
  37. 37.
    Ra̧czka, K., Kucharska, E.: ALMM solver - database structure and data access layer architecture. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 551–563. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58274-0_43CrossRefGoogle Scholar
  38. 38.
    Vernon, V.: Implementing Domain-Driven Design. Addison-Wesley, Boston (2013)Google Scholar
  39. 39.
    Vlissides, J., Helm, R., Johnson, R., Gamma, E.: Design Patterns: Elements of Reusable Object-Oriented Software, vol. 49, p. 11. Addison-Wesley, Reading (1995). no. 120Google Scholar
  40. 40.
    Wirfs-Brock, R., McKean, A.: Object Design: Roles, Responsibilities, and Collaborations. Addison-Wesley Professional, Boston (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Automatics and RoboticsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations