Advertisement

Experimental Measurements of the Packet Burst Ratio Parameter

  • Dominik SamociukEmail author
  • Andrzej Chydzinski
  • Marek Barczyk
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)

Abstract

In computer networking, the burst ratio is a parameter of the packet loss process, containing information about the tendency of losses to occur in blocks, rather than as separate units. Its value is especially important for real-time multimedia transmissions. In this paper, we report the measurements of the value of this parameter carried out in the networking laboratory. These measurements involved high volumes of traffic, different numbers of flows, different TCP/UDP traffic proportions and different packet sizes. In every case, a high value of the burst ratio was obtained. This is an experimental confirmation of the conjecture that the buffering mechanisms, commonly used in the contemporary networks, make the packet losses to group together.

Keywords

TCP/IP Networks Packet loss Burst ratio Sqlite data-base Traffic generators and analyzers Multimedia transmissions 

Notes

Acknowledgements

This work was conducted within project 2017/25/B/ST6/00110, founded by National Science Centre, Poland. The infrastructure was supported by PL-LAB2020 project, founded by National Centre for Research and Development, Poland, contract POIG.02.03.01-00-104/13-00.

References

  1. 1.
    Abbas, G., Manzoor, S., Hussain, M.: A stateless fairness-driven active queue management scheme for efficient and fair bandwidth allocation in congested Internet routers. Telecommun. Syst. 6, 1–18 (2017)Google Scholar
  2. 2.
    Arai, M., Chiba, A., Iwasaki, K.: Measurement and modeling of burst packet losses in internet end-to-end communications. In: Proceedings of 1999 Pacific Rim International Symposium on Dependable Computing, pp. 260–267. IEEE (1999)Google Scholar
  3. 3.
    Benko, P., Veres, A.: A passive method for estimating end-to-end TCP packet loss. In: Global Telecommunications Conference, GLOBECOM 2002, vol. 3, pp. 2609–2613. IEEE (2002)Google Scholar
  4. 4.
    Bolot, J.C.: End-to-end packet delay and loss behavior in the internet. In: ACM SIGCOMM Computer Communication Review, vol. 23, pp. 289–298. ACM (1993)Google Scholar
  5. 5.
    Bratiychuk, M., Chydzinski, A.: On the loss process in a batch arrival queue. Appl. Math. Model. 33(9), 3565–3577 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chróst, Ł., Brachman, A., Chydziński, A.: On the performance of AQM algorithms with small buffers. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39, pp. 168–173. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02671-3_20CrossRefGoogle Scholar
  7. 7.
    Chrost, L., Chydzinski, A.: On the deterministic approach to active queue management. Telecommun. Syst. 63(1), 27–44 (2016)CrossRefGoogle Scholar
  8. 8.
    Chydzinski, A.: Queue size in a BMAP queue with finite buffer. In: Koucheryavy, Y., Harju, J., Iversen, V.B. (eds.) NEW2AN 2006. LNCS, vol. 4003, pp. 200–210. Springer, Heidelberg (2006).  https://doi.org/10.1007/11759355_20CrossRefGoogle Scholar
  9. 9.
    Chydzinski, A., Wojcicki, R., Hryn, G.: On the number of losses in an MMPP queue. In: Koucheryavy, Y., Harju, J., Sayenko, A. (eds.) NEW2AN 2007. LNCS, vol. 4712, pp. 38–48. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74833-5_4CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Coates, M.J., Nowak, R.D.: Network loss inference using unicast end-to-end measurement. In: ITC Conference on IP Traffic, Modeling and Management, pp. 28–1 (2000)Google Scholar
  12. 12.
    Crovella, M.E., Bestavros, A.: Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans. Netw. 5(6), 835–846 (1997)CrossRefGoogle Scholar
  13. 13.
    DPDK: DPDK-Dump application for capturing traffic using DPDK. https://github.com/marty90/DPDK-Dump. Accessed 01 Feb 2018
  14. 14.
    Duffield, N.G., Presti, F.L., Paxson, V., Towsley, D.: Inferring link loss using striped unicast probes. In: Proceedings of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2001, vol. 2, pp. 915–923. IEEE (2001)Google Scholar
  15. 15.
    Haßlinger, G., Hohlfeld, O.: The Gilbert-Elliott model for packet loss in real time services on the Internet. In: 2008 14th GI/ITG Conference on Measuring, Modelling and Evaluation of Computer and Communication Systems (MMB), pp. 1–15. VDE (2008)Google Scholar
  16. 16.
    Jiang, W., Schulzrinne, H.: Modeling of packet loss and delay and their effect on real-time multimedia service quality. In: Proceedings of NOSSDAV 2000. Citeseer (2000)Google Scholar
  17. 17.
    Khoshnevisan, L., Salmasi, F.R.: A robust and high-performance queue management controller for large round trip time networks. Int. J. Syst. Sci. 47(7), 1586–1597 (2016)CrossRefGoogle Scholar
  18. 18.
    Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch Markovian arrival process. Perform. Eval. 54(2), 149–173 (2003)CrossRefGoogle Scholar
  19. 19.
    Leland, W.E., Willinger, W., Taqqu, M.S., Wilson, D.V.: On the self-similar nature of ethernet traffic. ACM SIGCOMM Comput. Commun. Rev. 25(1), 202–213 (1995)CrossRefGoogle Scholar
  20. 20.
    McGowan, J.W.: Burst ratio: a measure of bursty loss on packet-based networks (2005). US Patent 6,931,017Google Scholar
  21. 21.
    Pan, R., Natarajan, P., Baker, F., White, G.: Proportional integral controller enhanced (PIE): a lightweight control scheme to address the bufferbloat problem. Technical report (2017)Google Scholar
  22. 22.
    Poorzare, R., Jamali, S., Poorzare, A.: Maximum burst size adjustment for improving packet delivery ratio in optical burst switching (OBS) networks. Int. J. Innov. Sci. Eng. Technol. 2(5), 823–828 (2015)Google Scholar
  23. 23.
    Rachwalski, J., Papir, Z.: Analysis of burst ratio in concatenated channels. J. Telecommun. Inf. Technol. 4, 65–73 (2015)Google Scholar
  24. 24.
    Rachwalski, J., Papir, Z.: Burst ratio in concatenated Markov-based channels. J. Telecommun. Inf. Technol. 2014(1), 3–9 (2014)Google Scholar
  25. 25.
    Salvador, P., Pacheco, A., Valadas, R.: Modeling IP traffic: joint characterization of packet arrivals and packet sizes using bmaps. Comput. Netw. 44(3), 335–352 (2004)CrossRefGoogle Scholar
  26. 26.
    Sommers, J., Barford, P., Duffield, N., Ron, A.: Improving accuracy in end-to-end packet loss measurement. In: ACM SIGCOMM Computer Communication Review, vol. 35, pp. 157–168. ACM (2005)Google Scholar
  27. 27.
  28. 28.
    Spirent: Spirent. https://www.spirent.com/. Accessed 01 Feb 2018
  29. 29.
    Sqlite: Sqlite database. https://www.sqlite.org/. Accessed 01 Feb 2018
  30. 30.
    Sreenath, N.: Evaluating the burst delivery ratio of TCP variants with varying burst sizes and offset times in an all-optical burst switching network. Int. J. Comput. Appl. 67(10), 9–12 (2013)Google Scholar
  31. 31.
    Wang, P., Zhu, D., Lu, X.: Active queue management algorithm based on data driven predictive control. Telecommun. Syst. 64, 1–9 (2017)CrossRefGoogle Scholar
  32. 32.
    Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V.: Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. ACM SIGCOMM Comput. Commun. Rev. 25(4), 100–113 (1995)CrossRefGoogle Scholar
  33. 33.
    Yajnik, M., Moon, S., Kurose, J., Towsley, D.: Measurement and modelling of the temporal dependence in packet loss. In: Proceedings of Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 1999, vol. 1, pp. 345–352. IEEE (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dominik Samociuk
    • 1
    Email author
  • Andrzej Chydzinski
    • 1
  • Marek Barczyk
    • 1
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations