A CANoe-Based Approach for Receiving XML Data over the Ethernet

  • Marek DrewniakEmail author
  • Marcin Fojcik
  • Damian Grzechca
  • Michal Kruk
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)


Although the use of XML format allows many interoperability problems to be solved, it is not common solution in automotive electronics. Most of development systems used in automotive base on raw data instead of structured information. The paper presents an extension of CANoe software with a XML-based communication interface, used to receive and process measurement data from an Autonomous Mobile Platform through specialized database system. The solution provides interoperability in access to the measurement data as well as wide possibilities to use them in the visualisation, historical analysis and assessment of the quality of work of a platform.



This work was supported by the European Union from the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (grant agreement no. 612207) and research work financed from the funds for science in the years 2016-2017, which are allocated to an international co-financed project (grant agreement no. 3491/7.PR/15/2016/2).


  1. 1.
    Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12, 161–166 (2011)Google Scholar
  2. 2.
    Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6(4), 6–22 (2014)CrossRefGoogle Scholar
  3. 3.
    Budzan, S., Kasprzyk, J.: Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications. Opt. Lasers Eng. 77, 230–240 (2016)CrossRefGoogle Scholar
  4. 4.
    Cupek, R., Huczala, L.: Passive PROFIET I/O OPC DA server. In: IEEE Conference on Emerging Technologies & Factory Automation, ETFA 2009, pp. 1–5. IEEE (2009)Google Scholar
  5. 5.
    Cupek, R., Ziebinski, A., Fojcik, M.: An ontology model for communicating with an autonomous mobile platform. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 480–493. Springer, Cham (2017). Scholar
  6. 6.
    Cupek, R., Ziebinski, A., Franek, M.: FPGA based OPC UA embedded industrial data server implementation. J. Circ. Syst. Comput. 22(08), 1350070 (2013)CrossRefGoogle Scholar
  7. 7.
    Fang, X., Paynabar, K., Gebraeel, N.: Multistream sensor fusion-based prognostics model for systems with single failure modes. Reliab. Eng. Syst. Saf. 159, 322–331 (2017)CrossRefGoogle Scholar
  8. 8.
    Garcia, F., Martin, D., de la Escalera, A., Armingol, J.M.: Sensor fusion methodology for vehicle detection. IEEE Intell. Transp. Syst. Mag. 9(1), 123–133 (2017)CrossRefGoogle Scholar
  9. 9.
    Grzechca, D., Wróbel, T., Bielecki, P.: Indoor location and identification of objects with video surveillance system and WiFi module. In: 2014 International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), pp. 171–174. IEEE (2014)Google Scholar
  10. 10.
    Guan, H., Li, L., Jia, X.: Multi-sensor fusion vehicle positioning based on Kalman Filter. In: 2013 International Conference on Information Science and Technology (ICIST), pp. 296–299. IEEE (2013)Google Scholar
  11. 11.
    Harezlak, K., Skowron, R.: Performance aspects of migrating a web application from a relational to a NoSQL database. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 107–115. Springer, Cham (2015). Scholar
  12. 12.
    Helander, J.: Deeply embedded XML communication: towards an interoperable and seamless world. In: Proceedings of the 5th ACM International Conference on Embedded Software, pp. 62–67. ACM (2005)Google Scholar
  13. 13.
    Jastrząb, T., Kwiatkowski, G., Sadowski, P.: Mapping of selected synsets to semantic features. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015–2016. CCIS, vol. 613, pp. 357–367. Springer, Cham (2016). Scholar
  14. 14.
    Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems: A survey. IEEE Syst. J. 9(2), 350–365 (2015)CrossRefGoogle Scholar
  15. 15.
    Kobylecki, M., Kania, D.: Double-tick realization of binary control program. In: AIP Conference Proceedings, vol. 1790, p. 030009. AIP Publishing (2016)Google Scholar
  16. 16.
    Kozielski, M.: Multilevel conditional fuzzy c-means clustering of XML documents. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 532–539. Springer, Heidelberg (2007). Scholar
  17. 17.
    Krisp, H., Lamberg, K., Leinfellner, R.: Automated real-time testing of electronic control units. Technical report, SAE Technical Paper (2007)Google Scholar
  18. 18.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)CrossRefGoogle Scholar
  19. 19.
    Pollard, E., Morignot, P., Nashashibi, F.: An ontology-based model to determine the automation level of an automated vehicle for co-driving. In: 2013 16th International Conference on Information Fusion (FUSION), pp. 596–603. IEEE (2013)Google Scholar
  20. 20.
    Regele, R.: Using ontology-based traffic models for more efficient decision making of autonomous vehicles. In: Fourth International Conference on Autonomic and Autonomous Systems, ICAS 2008, pp. 94–99. IEEE (2008)Google Scholar
  21. 21.
    Stanek, D., Mrozek, D., Małysiak-Mrozek, B.: MViewer: visualization of protein molecular structures stored in the PDB, mmCIF and PDBML data formats. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 323–333. Springer, Heidelberg (2013). Scholar
  22. 22.
    Szafranski, G., Czyba, R., Janusz, W., Blotnicki, W.: Altitude estimation for the UAV’s applications based on sensors fusion algorithm. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 508–515. IEEE (2013)Google Scholar
  23. 23.
    Tewolde, G.S.: Sensor and network technology for intelligent transportation systems. In: 2012 IEEE International Conference on Electro/Information Technology (EIT), pp. 1–7. IEEE (2012)Google Scholar
  24. 24.
    Tokarz, K., Czekalski, P., Sieczkowski, W.: Integration of ultrasonic and inertial methods in indoor navigation system. Theor. Appl. Inform. 26 (2014)Google Scholar
  25. 25.
    Wang, Y., Vuran, M.C., Goddard, S.: Cyber-physical systems in industrial process control. ACM SIGBED Rev. 5(1), 12 (2008)CrossRefGoogle Scholar
  26. 26.
    Ziębiński, A., Świerc, S.: The VHDL implementation of reconfigurable MIPS processor. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 663–669. Springer, Heidelberg (2009). Scholar
  27. 27.
    Ziebinski, A., Swierc, S.: Soft core processor generated based on the machine code of the application. J. Circ. Syst. Comput. 25(04), 1650029 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marek Drewniak
    • 1
    Email author
  • Marcin Fojcik
    • 2
  • Damian Grzechca
    • 3
  • Michal Kruk
    • 3
  1. 1.AIUT Sp. z o.o. (Ltd.)GliwicePoland
  2. 2.Western Norway University of Applied SciencesBergenNorway
  3. 3.Silesian University of TechnologyGliwicePoland

Personalised recommendations