Advertisement

Tensor-Based Ontology Data Processing for Semantic Service Matchmaking

  • Andrzej Szwabe
  • Paweł Misiorek
  • Michał Ciesielczyk
  • Jarosław BąkEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)

Abstract

In this paper, we present a new application of multilinear data processing to Semantic Web Service matchmaking that is based on the Covariance-Matrix-based Filtering (CMF) algorithm and ontology data representation. We show advisability of integrated algebraic modeling of lexical data derived from web service descriptions and the corresponding ontology-based semantic data. The experimental evaluation results indicate superiority of the covariance-based tensor filtering method over other state-of-the-art tensor processing methods, as well as the advantages of using the proposed ontology data representation.

Keywords

Multidimensional data modeling Data extraction Ontologies Web services 

Notes

Acknowledgments

This work was supported by the Polish National Science Centre, grant DEC-2011/01/D/ST6/06788, and by Poznan University of Technology under grant 04/45/DSPB/0185.

References

  1. 1.
  2. 2.
    SAWSDL-TC dataset. http://projects.semwebcentral.org/projects/sawsdl-tc/. Accessed Feb 2018
  3. 3.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Karpus, A., Vagliano, I., Goczyła, K.: Serendipitous recommendations through ontology-based contextual pre-filtering. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 246–259. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58274-0_21CrossRefGoogle Scholar
  5. 5.
    Klusch, M., Kapahnke, P.: The iSeM matchmaker: a flexible approach for adaptive hybrid semantic service selection. Web Semant.: Sci. Serv. Agents World Wide Web 15, 1–14 (2012)CrossRefGoogle Scholar
  6. 6.
    Klusch, M., Kapahnke, P., Zinnikus, I.: Adaptive hybrid semantic selection of SAWSDL services with SAWSDL-MX2. Int. J. Semant. Web Inf. Syst. 6, 1–26 (2010)CrossRefGoogle Scholar
  7. 7.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009).  https://doi.org/10.1109/MC.2009.263. ISSN 0018-9162CrossRefGoogle Scholar
  9. 9.
    Köpke, J.: Annotation paths for matching XML-schemas. Data Knowl. Eng. (2017, in press).  https://doi.org/10.1016/j.datak.2017.12.002
  10. 10.
    Kroonenberg, P.M.: Three-Mode Principal Component Analysis: Theory and Applications, vol. 2. DSWO press; three-mode.leidenuniv.nl (1983)Google Scholar
  11. 11.
    Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: A survey of multilinear subspace learning for tensor data. Pattern Recogn. 44(7), 1540–1551 (2011)CrossRefGoogle Scholar
  12. 12.
    Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)CrossRefGoogle Scholar
  13. 13.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  14. 14.
    Nickel, M., Tresp, V.: An analysis of tensor models for learning on structured data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 272–287. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40991-2_18CrossRefGoogle Scholar
  15. 15.
    Plebani, P., Pernici, B.: URBE: web service retrieval based on similarity evaluation. IEEE Trans. Knowl. Data Eng. 21(11), 1629–1642 (2009)CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Mier, P., Pedrinaci, C., Lama, M., Mucientes, M.: An integrated semantic web service discovery and composition framework. CoRR abs/1502.02840 (2015). http://arxiv.org/abs/1502.02840
  17. 17.
    Sandin, F., Emruli, B., Sahlgren, M.: Incremental dimension reduction of tensors with random index. CoRR abs/1103.3585, pp. 240–256 (2011)Google Scholar
  18. 18.
    Schulte, S., Lampe, U., Eckert, J., Steinmetz, R.: LOG4SWS.KOM: self-adapting semantic web service discovery for SAWSDL. In: Proceedings of the 2010 6th World Congress on Services, pp. 511–518. IEEE Computer Society, Washington, DC (2010)Google Scholar
  19. 19.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant.: Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007)CrossRefGoogle Scholar
  20. 20.
    Szwabe, A., Ciesielczyk, M., Misiorek, P., Blinkiewicz, M.: Application of the tensor-based recommendation engine to semantic service matchmaking. In: Proceedings of The Ninth International Conference on Advances in Semantic Processing, SEMAPRO 2015, pp. 116–125. IARIA, Nice (2015)Google Scholar
  21. 21.
    Szwabe, A., Misiorek, P., Ciesielczyk, M.: Multilinear filtering based on a hierarchical structure of covariance matrices. Schedae Informaticae 24, 98–107 (2016)Google Scholar
  22. 22.
    Szwabe, A., Misiorek, P., Ciesielczyk, M.: Tensor-based modeling of temporal features for big data CTR estimation. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 16–27. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58274-0_2CrossRefGoogle Scholar
  23. 23.
    Szwabe, A., Misiorek, P., Walkowiak, P.: Reflective relational learning for ontology alignment. In: Omatu, S., De Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 519–526. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28765-7_62CrossRefGoogle Scholar
  24. 24.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006).  https://doi.org/10.1007/11814771_26CrossRefGoogle Scholar
  25. 25.
    Wei, D., Wang, T., Wang, J., Bernstein, A.: SAWSDL-iMatcher: a customizable and effective semantic web service matchmaker. Web Semant.: Sci. Serv. Agents World Wide Web 9(4), 402–417 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Andrzej Szwabe
    • 1
  • Paweł Misiorek
    • 1
  • Michał Ciesielczyk
    • 1
  • Jarosław Bąk
    • 1
    Email author
  1. 1.Institute of Control, Robotics and Information EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations