Covering Approach to Action Rule Learning

  • Paweł Matyszok
  • Marek Sikora
  • Łukasz WróbelEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)


Action rules specify recommendations which should be followed in order to transfer objects to the desired decision class. This paper presents a proposal of a novel method for induction of action rules directly from a dataset. The proposed algorithm follows the so-called covering schema and employs a pruning procedure, thus being able to produce comprehensible rule sets. An experimental study shows that the proposed method is able to discover strong actions of superior accuracy.



This work was partially supported by Polish National Centre for Research and Development (NCBiR) within the programme Prevention and Treatment of Civilization Diseases – STRATEGMED III, grant number STRATEGMED3/304586/5/NCBR/2017 (PersonALL).

A part of the work was carried out within the statutory research project of the Institute of Informatics, BK-213/RAU2/2018.


  1. 1.
    Almardini, M., et al.: Reduction of readmissions to hospitals based on actionable knowledge discovery and personalization. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015-2016. CCIS, vol. 613, pp. 39–55. Springer, Cham (2016). Scholar
  2. 2.
    Blachnik, M.: Instance selection for classifier performance estimation in meta learning. Entropy 19(11), 583 (2017). Scholar
  3. 3.
    Dardzinska, A.: Action Rules Mining, vol. 468. Springer, Heidelberg (2012). Scholar
  4. 4.
    Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54 (1999)CrossRefGoogle Scholar
  5. 5.
    Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer, Heidelberg (2012). Scholar
  6. 6.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 9 (2006)CrossRefGoogle Scholar
  7. 7.
    Greco, S., Matarazzo, B., Pappalardo, N., Słowinski, R.: Measuring expected effects of interventions based on decision rules. J. Exp. Theor. Artif. Intell. 17(1–2), 103–118 (2005)CrossRefGoogle Scholar
  8. 8.
    Grzymala-Busse, J.W., Ziarko, W.: Data mining based on rough sets. Data Min.: Oppor. Chall. 2, 142–173 (2003)CrossRefGoogle Scholar
  9. 9.
    Hajja, A., Raś, Z.W., Wieczorkowska, A.A.: Hierarchical object-driven action rules. J. Intell. Inf. Syst. 42(2), 207–232 (2014)CrossRefGoogle Scholar
  10. 10.
    He, Z., Xu, X., Deng, S.: Data mining for actionable knowledge: a survey. arXiv preprint cs/0501079 (2005)Google Scholar
  11. 11.
    Im, S., Raś, Z.W.: Action rule extraction from a decision table: ARED. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) ISMIS 2008. LNCS (LNAI), vol. 4994, pp. 160–168. Springer, Heidelberg (2008). Scholar
  12. 12.
    Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Mach. Learn. 78(3), 343–379 (2010). Scholar
  13. 13.
    Kaufman, K.A., Michalski, R.S.: Learning in an inconsistent world: rule selection in STAR/AQ18. Technical report, Machine Learning and Inference Laboratory (1999)Google Scholar
  14. 14.
    Pawlak, Z.: Information systems theoretical foundations. Inf. syst. 6(3), 205–218 (1981)CrossRefGoogle Scholar
  15. 15.
    Raś, Z.W., Dardzinska, A., Tsay, L.S., Wasyluk, H.: Association action rules. In: IEEE International Conference on 2008 Data Mining Workshops, ICDMW 2008, pp. 283–290. IEEE (2008)Google Scholar
  16. 16.
    Raś, Z.W., Tzacheva, A.A., Tsay, L.S., Giirdal, O.: Mining for interesting action rules. In: IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 187–193. IEEE (2005)Google Scholar
  17. 17.
    Sikora, M., Wróbel, Ł.: Data-driven adaptive selection of rule quality measures for improving rule induction and filtration algorithms. Int. J. Gen. Syst. 42(6), 594–613 (2013). Scholar
  18. 18.
    Słowiński, R., Greco, S.: Measuring attractiveness of rules from the viewpoint of knowledge representation, prediction and efficiency of intervention. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 11–22. Springer, Heidelberg (2005). Scholar
  19. 19.
    Stańczyk, U., Zielosko, B.: On combining discretisation parameters and attribute ranking for selection of decision rules. In: Polkowski, L. (ed.) IJCRS 2017. LNCS (LNAI), vol. 10313, pp. 329–349. Springer, Cham (2017). Scholar
  20. 20.
    Touati, H., Raś, Z.W., Studnicki, J., Wieczorkowska, A.A.: Mining surgical meta-actions effects with variable diagnoses’ number. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 254–263. Springer, Cham (2014). Scholar
  21. 21.
    Trépos, R., Salleb-Aouissi, A., Cordier, M.O., Masson, V., Gascuel-Odoux, C.: Building actions from classification rules. Knowl. Inf. Syst. 34(2), 267–298 (2013)CrossRefGoogle Scholar
  22. 22.
    Wang, K., Jiang, Y., Tuzhilin, A.: Mining actionable patterns by role models. In: Proceedings of the 22nd International Conference on 2006 Data Engineering, ICDE 2006, p. 16. IEEE (2006)Google Scholar
  23. 23.
    Wróbel, Ł., Sikora, M., Michalak, M.: Rule quality measures settings in classification, regression and survival rule induction-an empirical approach. Fundam. Inform. 149(4), 419–449 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhu, H.M., Huang, W.D., Zheng, H.S.: Method for discovering actionable rule. In: Fourth International Conference on 2007 Fuzzy Systems and Knowledge Discovery, FSKD 2007, vol. 1, pp. 397–401. IEEE (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Paweł Matyszok
    • 1
  • Marek Sikora
    • 1
  • Łukasz Wróbel
    • 1
    Email author
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations