Advertisement

Optimization of Approximate Decision Rules Relative to Length

  • Beata ZieloskoEmail author
  • Krzysztof Żabiński
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)

Abstract

In the paper, a modified dynamic programming approach for optimization of decision rules relative to length is studied. Experimental results connected with length of approximate decision rules, size of a directed acyclic graph, and accuracy of classifiers, are presented.

Keywords

Decision rules Dynamic programming approach Optimization Length 

References

  1. 1.
    Alkhalid, A., Amin, T., Chikalov, I., Hussain, S., Moshkov, M., Zielosko, B.: Optimization and analysis of decision trees and rules: dynamic programming approach. Int. J. Gen. Syst. 42(6), 614–634 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amin, T., Chikalov, I., Moshkov, M., Zielosko, B.: Dynamic programming approach for partial decision rule optimization. Fundam. Inform. 119(3–4), 233–248 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007). http://www.ics.uci.edu/~mlearn/
  4. 4.
    Błaszczyński, J., Słowiński, R., Szela̧g, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Inf. Sci. 181(5), 987–1002 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54 (1999)CrossRefGoogle Scholar
  6. 6.
    Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach. Studies in Computational Intelligence, vol. 360. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20995-6CrossRefzbMATHGoogle Scholar
  7. 7.
    Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)CrossRefGoogle Scholar
  9. 9.
    Stańczyk, U., Zielosko, B.: On combining discretisation parameters and attribute ranking for selection of decision rules. In: Polkowski, L. (ed.) IJCRS 2017. LNCS, vol. 10313, pp. 329–349. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60837-2_28CrossRefGoogle Scholar
  10. 10.
    Stefanowski, J., Vanderpooten, D.: Induction of decision rules in classification and discovery-oriented perspectives. Int. J. Intell. Syst. 16(1), 13–27 (2001)CrossRefGoogle Scholar
  11. 11.
    Wróbel, Ł., Sikora, M., Michalak, M.: Rule quality measures settings in classification, regression and survival rule induction - an empirical approach. Fundam. Inform. 149(4), 419–449 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zielosko, B.: Optimization of approximate decision rules relative to coverage. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 170–179. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06932-6_17CrossRefGoogle Scholar
  13. 13.
    Zielosko, B.: Optimization of exact decision rules relative to length. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) IDT 2017. SIST, vol. 72, pp. 149–158. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-59421-7_14CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of Silesia in KatowiceSosnowiecPoland

Personalised recommendations