Optimization of Approximate Decision Rules Relative to Length

  • Beata ZieloskoEmail author
  • Krzysztof Żabiński
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 928)


In the paper, a modified dynamic programming approach for optimization of decision rules relative to length is studied. Experimental results connected with length of approximate decision rules, size of a directed acyclic graph, and accuracy of classifiers, are presented.


Decision rules Dynamic programming approach Optimization Length 


  1. 1.
    Alkhalid, A., Amin, T., Chikalov, I., Hussain, S., Moshkov, M., Zielosko, B.: Optimization and analysis of decision trees and rules: dynamic programming approach. Int. J. Gen. Syst. 42(6), 614–634 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amin, T., Chikalov, I., Moshkov, M., Zielosko, B.: Dynamic programming approach for partial decision rule optimization. Fundam. Inform. 119(3–4), 233–248 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007).
  4. 4.
    Błaszczyński, J., Słowiński, R., Szela̧g, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Inf. Sci. 181(5), 987–1002 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54 (1999)CrossRefGoogle Scholar
  6. 6.
    Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach. Studies in Computational Intelligence, vol. 360. Springer, Heidelberg (2011). Scholar
  7. 7.
    Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)CrossRefGoogle Scholar
  9. 9.
    Stańczyk, U., Zielosko, B.: On combining discretisation parameters and attribute ranking for selection of decision rules. In: Polkowski, L. (ed.) IJCRS 2017. LNCS, vol. 10313, pp. 329–349. Springer, Cham (2017). Scholar
  10. 10.
    Stefanowski, J., Vanderpooten, D.: Induction of decision rules in classification and discovery-oriented perspectives. Int. J. Intell. Syst. 16(1), 13–27 (2001)CrossRefGoogle Scholar
  11. 11.
    Wróbel, Ł., Sikora, M., Michalak, M.: Rule quality measures settings in classification, regression and survival rule induction - an empirical approach. Fundam. Inform. 149(4), 419–449 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zielosko, B.: Optimization of approximate decision rules relative to coverage. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 170–179. Springer, Cham (2014). Scholar
  13. 13.
    Zielosko, B.: Optimization of exact decision rules relative to length. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) IDT 2017. SIST, vol. 72, pp. 149–158. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of Silesia in KatowiceSosnowiecPoland

Personalised recommendations