Skip to main content

Pulmonary Function Tests in Idiopathic Pulmonary Fibrosis

  • Chapter
  • First Online:
Idiopathic Pulmonary Fibrosis

Part of the book series: Respiratory Medicine ((RM))

Abstract

Pulmonary function tests are typically impaired in IPF, although patients in early disease stage can show lung volumes in normal range. The decreased lung compliance caused by tissue stiffness leads to a restrictive ventilatory defect, while ventilation and perfusion abnormalities are associated with a reduction of lung diffusion for carbon monoxide (DLco). The consequence of these volume and diffusion alterations is a progressive gas exchange impairment, which translates into increasing shortness of breath as a classical IPF symptom. Based on its well-established correlation with mortality, forced vital capacity (FVC) is the best biomarker we have to stratify IPF patients according to lung function. However, the concomitant presence of emphysema and the consequent hyperinflation of the lung makes FVC interpretation challenging. Pulmonary hypertension, another frequent complication of IPF, can cause a marked reduction of DLco even when lung volumes are still well preserved. Decline in FVC over time is currently used as a primary endpoint in clinical trials in IPF alone or in combination with other biomarkers. Daily home spirometry is a promising approach and may allow the separation of rapid from slow progressors and, likely, identify those patients prone to develop acute exacerbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948–68.

    Article  CAS  Google Scholar 

  2. Kornbluth RS, Turino GM. Respiratory control in diffuse interstitial lung disease and diseases of the pulmonary vasculature. Clin Chest Med. 1980;1:91–102.

    CAS  PubMed  Google Scholar 

  3. McCarthy DS, Ostrow DN, Hershfield ES. Chronic obstructive pulmonary disease following idiopathic pulmonary fibrosis. Chest. 1980;77:473–7.

    Article  CAS  Google Scholar 

  4. Renzi G, Milic-Emili J, Grassino AE. The pattern of breathing in diffuse lung fibrosis. Bull Eur Physiopathol Respir. 1982;18:461–72.

    CAS  PubMed  Google Scholar 

  5. Cottin V. The impact of emphysema in pulmonary fibrosis. Eur Respir Rev. 2013;22:153–7.

    Article  Google Scholar 

  6. O’Donnell DE, Elbehairy AF, Berton DC, Domnik NJ, Neder JA. Advances in the evaluation of respiratory pathophysiology during exercise in chronic lung diseases. Front Physiol. 2017;8:82.

    PubMed  PubMed Central  Google Scholar 

  7. Enright PL, Beck KC, Sherrill DL. Repeatability of spirometry in 18,000 adult patients. Am J Respir Crit Care Med. 2004;169:235–8.

    Article  Google Scholar 

  8. Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788–824.

    Article  Google Scholar 

  9. du Bois RM, Weycker D, Albera C, et al. Ascertainment of individual risk of mortality for patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184:459–66.

    Article  Google Scholar 

  10. Latsi PI, du Bois RM, Nicholson AG, et al. Fibrotic idiopathic interstitial pneumonia: the prognostic value of longitudinal functional trends. Am J Respir Crit Care Med. 2003;168:531–7.

    Article  Google Scholar 

  11. Collard HR, King TE Jr, Bartelson BB, Vourlekis JS, Schwarz MI, Brown KK. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2003;168:538–42.

    Article  Google Scholar 

  12. King TE Jr, Safrin S, Starko KM, et al. Analyses of efficacy end points in a controlled trial of interferon-gamma1b for idiopathic pulmonary fibrosis. Chest. 2005;127:171–7.

    Article  CAS  Google Scholar 

  13. du Bois RM, Weycker D, Albera C, et al. Forced vital capacity in patients with idiopathic pulmonary fibrosis: test properties and minimal clinically important difference. Am J Respir Crit Care Med. 2011;184:1382–9.

    Article  Google Scholar 

  14. Zappala CJ, Latsi PI, Nicholson AG, et al. Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35:830–6.

    Article  CAS  Google Scholar 

  15. Reichmann WM, Yu YF, Macaulay D, Wu EQ, Nathan SD. Change in forced vital capacity and associated subsequent outcomes in patients with newly diagnosed idiopathic pulmonary fibrosis. BMC Pulm Med. 2015;15:167.

    Article  Google Scholar 

  16. Paterniti MO, Bi Y, Rekic D, Wang Y, Karimi-Shah BA, Chowdhury BA. Acute exacerbation and decline in forced vital capacity are associated with increased mortality in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14:1395–402.

    Article  Google Scholar 

  17. Jo HE, Glaspole I, Moodley Y, et al. Disease progression in idiopathic pulmonary fibrosis with mild physiological impairment: analysis from the Australian IPF registry. BMC Pulm Med. 2018;18:19.

    Article  Google Scholar 

  18. King TE Jr, Albera C, Bradford WZ, et al. All-cause mortality rate in patients with idiopathic pulmonary fibrosis. Implications for the design and execution of clinical trials. Am J Respir Crit Care Med. 2014;189:825–31.

    Article  Google Scholar 

  19. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med. 2000;161:646–64.

    Article  Google Scholar 

  20. Wells AU. Forced vital capacity as a primary end point in idiopathic pulmonary fibrosis treatment trials: making a silk purse from a sow's ear. Thorax. 2013;68:309–10.

    Article  Google Scholar 

  21. Richeldi L, Ryerson CJ, Lee JS, et al. Relative versus absolute change in forced vital capacity in idiopathic pulmonary fibrosis. Thorax. 2012;67:407–11.

    Article  Google Scholar 

  22. Akagi T, Matsumoto T, Harada T, et al. Coexistent emphysema delays the decrease of vital capacity in idiopathic pulmonary fibrosis. Respir Med. 2009;103:1209–15.

    Article  Google Scholar 

  23. Cottin V, Hansell DM, Sverzellati N, et al. Effect of emphysema extent on serial lung function in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196:1162–71.

    Article  CAS  Google Scholar 

  24. Wells AU, Desai SR, Rubens MB, et al. Idiopathic pulmonary fibrosis: a composite physiologic index derived from disease extent observed by computed tomography. Am J Respir Crit Care Med. 2003;167:962–9.

    Article  Google Scholar 

  25. Ley B, Ryerson CJ, Vittinghoff E, et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med. 2012;156:684–91.

    Article  Google Scholar 

  26. Ley B, Elicker BM, Hartman TE, et al. Idiopathic pulmonary fibrosis: CT and risk of death. Radiology. 2014;273:570–9.

    Article  Google Scholar 

  27. Ley B, Bradford WZ, Weycker D, Vittinghoff E, du Bois RM, Collard HR. Unified baseline and longitudinal mortality prediction in idiopathic pulmonary fibrosis. Eur Respir J. 2015;45:1374–81.

    Article  Google Scholar 

  28. Morisset J, Vittinghoff E, Lee BY, et al. The performance of the GAP model in patients with rheumatoid arthritis associated interstitial lung disease. Respir Med. 2017;127:51–6.

    Article  Google Scholar 

  29. Tomassetti S, Ryu JH, Poletti V. Staging systems and disease severity assessment in interstitial lung diseases. Curr Opin Pulm Med. 2015;21:463–9.

    Article  Google Scholar 

  30. Martinez FJ, Safrin S, Weycker D, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005;142:963–7.

    Article  Google Scholar 

  31. Nathan SD, Albera C, Bradford WZ, et al. Effect of continued treatment with pirfenidone following clinically meaningful declines in forced vital capacity: analysis of data from three phase 3 trials in patients with idiopathic pulmonary fibrosis. Thorax. 2016;71:429–35.

    Article  Google Scholar 

  32. Richeldi L, Azuma A, Selman M, et al. Twenty-four week decline in forced vital capacity predicts mortality at week 52 in the INPULSIS® trials. Eur Respir J. 2016;48:OA1814.

    Article  Google Scholar 

  33. Schmidt SL, Tayob N, Han MK, et al. Predicting pulmonary fibrosis disease course from past trends in pulmonary function. Chest. 2014;145:579–85.

    Article  Google Scholar 

  34. Ley B. Clarity on endpoints for clinical trials in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14:1383–4.

    Article  Google Scholar 

  35. Nathan SD, Meyer KC. IPF clinical trial design and endpoints. Curr Opin Pulm Med. 2014;20:463–71.

    Article  Google Scholar 

  36. Nathan SD, Shlobin OA, Weir N, et al. Long-term course and prognosis of idiopathic pulmonary fibrosis in the new millennium. Chest. 2011;140:221–9.

    Article  Google Scholar 

  37. Spagnolo P, Luppi F, Maher TM, Wuyts WA, Grutters JC. Primary endpoints in phase 3 clinical trials in idiopathic pulmonary fibrosis: one step at a time. Am J Respir Crit Care Med. 2013;187:1271–2.

    Article  CAS  Google Scholar 

  38. Raghu G, Collard HR, Anstrom KJ, et al. Idiopathic pulmonary fibrosis: clinically meaningful primary endpoints in phase 3 clinical trials. Am J Respir Crit Care Med. 2012;185:1044–8.

    Article  Google Scholar 

  39. Finkelstein SM, Lindgren B, Prasad B, et al. Reliability and validity of spirometry measurements in a paperless home monitoring diary program for lung transplantation. Heart & lung :J Crit Care. 1993;22:523–33.

    CAS  Google Scholar 

  40. Bjortuft O, Johansen B, Boe J, Foerster A, Holter E, Geiran O. Daily home spirometry facilitates early detection of rejection in single lung transplant recipients with emphysema. Eur Respir J. 1993;6:705–8.

    CAS  PubMed  Google Scholar 

  41. Lindgren BR, Finkelstein SM, Prasad B, et al. Determination of reliability and validity in home monitoring data of pulmonary function tests following lung transplantation. Res Nurs Health. 1997;20:539–50.

    Article  CAS  Google Scholar 

  42. Chlan L, Snyder M, Finkelstein S, et al. Promoting adherence to an electronic home spirometry research program after lung transplantation. Appl Nurs Res. 1998;11:36–40.

    Article  CAS  Google Scholar 

  43. Finkelstein SM, Snyder M, Stibbe CE, et al. Staging of bronchiolitis obliterans syndrome using home spirometry. Chest. 1999;116:120–6.

    Article  CAS  Google Scholar 

  44. Finkelstein SM, Scudiero A, Lindgren B, Snyder M, Hertz MI. Decision support for the triage of lung transplant recipients on the basis of home-monitoring spirometry and symptom reporting. Heart & Lung : J Crit Care. 2005;34:201–8.

    Article  Google Scholar 

  45. Lavelle MB, Finkelstein SM, Lindgren BR, et al. Newsletters and adherence to a weekly home spirometry program after lung transplant. Prog Transplant. 2010;20:329–34.

    Article  Google Scholar 

  46. Finkelstein SM, Lindgren BR, Robiner W, et al. A randomized controlled trial comparing health and quality of life of lung transplant recipients following nurse and computer-based triage utilizing home spirometry monitoring. Telemed J E Health. 2013;19:897–903.

    Article  Google Scholar 

  47. Lindell KO, Olshansky E, Song MK, et al. Impact of a disease-management program on symptom burden and health-related quality of life in patients with idiopathic pulmonary fibrosis and their care partners. Heart & Lung : J Crit Care. 2010;39:304–13.

    Article  Google Scholar 

  48. Russell AM, Adamali H, Molyneaux PL, et al. Daily home spirometry: an effective tool for detecting progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2016;194:989–97.

    Article  Google Scholar 

  49. Wuyts WA, Bonella F, Costabel U, et al. An important step forward, but still a way to go. Am J Respir Crit Care Med. 2016;193:340–1.

    Article  Google Scholar 

  50. de Wall C, Sabine D, Gregor W, et al. Home spirometry as early detector of azithromycin refractory bronchiolitis obliterans syndrome in lung transplant recipients. Respir Med. 2014;108:405–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bonella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonella, F., di Marco, F., Spagnolo, P. (2019). Pulmonary Function Tests in Idiopathic Pulmonary Fibrosis. In: Meyer, K., Nathan, S. (eds) Idiopathic Pulmonary Fibrosis. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-99975-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99975-3_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-99974-6

  • Online ISBN: 978-3-319-99975-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics