Skip to main content

A Tool for Knowledge-Oriented Physics-Based Motion Planning and Simulation

  • Chapter
  • First Online:
Recent Trends and Advances in Wireless and IoT-enabled Networks

Abstract

The recent advancements in robotic systems set new challenges for robotic simulation software, particularly for planning. It requires the realistic behavior of the robots and the objects in the simulation environment by incorporating their dynamics. Furthermore, it requires the capability of reasoning about the action effects. To cope with these challenges, this study proposes an open-source simulation tool for knowledge-oriented physics-based motion planning by extending The Kautham Project, a C++-based open-source simulation tool for motion planning. The proposed simulation tool provides a flexible way to incorporate the physics, knowledge, and reasoning in planning process. Moreover, it provides ROS-based interface to handle the manipulation actions (such as push/pull) and an easy way to communicate with the real robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbari, A., Gillani, M., & Rosell, J. (2015). Task and motion planning using physics-based reasoning. In IEEE 20th International Conference on Emerging Technologies Factory Automation (ETFA) (pp. 1–7).

    Google Scholar 

  2. Akbari, A., Gillani, M., & Rosell, J. (2016). Task planning using physics-based heuristics on manipulation actions. In IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1–8).

    Google Scholar 

  3. Andre, G. (2011). A software architecture for robot control and its application to social robotics. In Proceedings of the IEEE International Conference on Robotics and Automation: Workshop on Open Source Software in Robotics.

    Google Scholar 

  4. Antoniou, G., & van Harmelen, F. (2003). Web ontology language: OWL. In S. Staab & R. Studer (Eds.), Handbook on ontologies in information systems (pp. 67–92). Berlin: Springer.

    Google Scholar 

  5. Barraquand, J., Langlois, B., & Latombe, J. C. (1992). Numerical potential field techniques for robot path planning. IEEE Transactions on Systems, Man, and Cybernetics, 22(2), 224–241.

    Article  MathSciNet  Google Scholar 

  6. Bruyninckx, H., Soetens, P., & Koninckx, B. (2003). The real-time motion control core of the OROCOS project. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2766–2771).

    Google Scholar 

  7. Connolly, C. I., & Grupen, R. A. (1993). The applications of harmonic functions to robotics. Journal of Robotic Systems, 10(7), 931–946.

    Article  Google Scholar 

  8. Diankov, R. (August 2010). Automated Construction of Robotic Manipulation Programs. PhD thesis, Carnegie Mellon University, Robotics Institute.

    Google Scholar 

  9. Gillani, M., Akbari, A., & Rosell, J. (2015). Ontological physics-based motion planning for manipulation. In Proceedings of the IEEE International Conference on Emerging Technologies Factory Automation (ETFA) (pp. 1–7).

    Google Scholar 

  10. Gillani, M., Akbari, A., & Rosell, J. (2016). Physics-based motion planning: Evaluation criteria and benchmarking. In Robot 2015: Second Iberian Robotics Conference (pp. 43–55). Cham: Springer.

    Chapter  Google Scholar 

  11. Gottschalk, S., Lin, M., Manocha, D., & Larsen, E. (1999). PQP–the proximity query package. http://gamma.cs.unc.edu/SSV/.

    Google Scholar 

  12. Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.

    Article  Google Scholar 

  13. LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5), 378–400.

    Article  Google Scholar 

  14. Miller, A. T., & Allen, P. K. (2004). Graspit! A versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine, 11(4), 110–122.

    Article  Google Scholar 

  15. Pan, J., Chitta, S., & Manocha, D. (2012). FCL: A general purpose library for collision and proximity queries. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3859–3866). Piscataway: IEEE.

    Google Scholar 

  16. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). ROS: An open-source robot operating system. In ICRA Workshop on Open Source Software (Vol. 3, pp. 5).

    Google Scholar 

  17. Rosell, J., Pérez, A., Aliakbar, A., Gillani, M., Palomo, L., García, N., et al. (2014). The Kautham project: A teaching and research tool for robot motion planning. In IEEE International Conference on Emerging Technologies Factory Automation (ETFA) (pp. 1–8).

    Google Scholar 

  18. Sucan, I., & Kavraki, L. E. (2012). A sampling-based tree planner for systems with complex dynamics. IEEE Transactions on Robotics, 28(1), 116–131.

    Article  Google Scholar 

  19. Suçan, I. A., & Chitta, S. (2013). MoveIt! http://moveit.ros.org.

    Google Scholar 

  20. Şucan, I. A., Moll, M., & Kavraki, L. E. (2012). The open motion planning library. IEEE Robotics & Automation Magazine, 19, 72–82. http://ompl.kavrakilab.org.

    Article  Google Scholar 

  21. Vahrenkamp, N., Kröhnert, M., Ulbrich, S., Asfour, T., Metta, G., Dillmann, R., et al. (2013). Simox: A robotics toolbox for simulation, motion and grasp planning. In Intelligent autonomous systems (Vol. 12, pp. 585–594). Berlin: Springer.

    Google Scholar 

Download references

Acknowledgment

The work of the authors was partially supported by the Spanish Government through the projects DPI2013-40882-P and DPI2016-80077-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhayyuddin Gillani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gillani, M., Akbari, A., Rosell, J., Qazi, W.M. (2019). A Tool for Knowledge-Oriented Physics-Based Motion Planning and Simulation. In: Jan, M., Khan, F., Alam, M. (eds) Recent Trends and Advances in Wireless and IoT-enabled Networks. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-99966-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99966-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99965-4

  • Online ISBN: 978-3-319-99966-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics