Skip to main content

Exploring IoT Applications for Disaster Management: Identifying Key Factors and Proposing Future Directions

  • Chapter
  • First Online:

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

In the last few decades, disasters made a huge loss to human beings, natural resources, and other assets. As we are living in an era of technology, there can be no other way better than using ICT (information and communication technology) for disaster management, as communication is the most challenging part of it. The Internet of Things (IoT), a rapidly emerging framework, can be utilized in the best possible ways for the disaster preparedness phase to recovery phase. This paper presents the survey of the work done for disaster management using technology. A detailed analysis has performed to categorize different approaches of disaster management based on supporting phase and technologies used. The best used technology is highlighted. Moreover, forecasting about the growth of its usage and the enhancement in disaster management is also done in this paper. The paper also presents new direction of research in this most attention-grabbing topic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: The internet of things architecture, possible applications and key challenges. In Proceedings of the 10th International Conference on Frontiers of Information Technology (FIT) 2012 (pp. 257–260).

    Google Scholar 

  2. Chun, S.-M., & Park, J.-T. (2017). A mechanism for reliable mobility management for internet of things using CoAP. Sensors, 17(1), 136.

    Article  MathSciNet  Google Scholar 

  3. Khodadadi, F., Dastjerdi, A. V., & Buyya, R. (2017). Internet of Things: An overview. arXiv preprint arXiv:1703.06409.

    Google Scholar 

  4. Jan, M. A., Nanda, P., He, X., Tan, Z., & Liu, R. P. (2014, September). A robust authentication scheme for observing resources in the internet of things environment. In 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (pp. 205–211). Beijing, China: IEEE.

    Google Scholar 

  5. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Article  Google Scholar 

  6. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Article  Google Scholar 

  7. Khan, F., Khan, M., Iqbal, Z., ur Rahman, I., & Alam, M. (2016, September). Secure and safe surveillance system using sensors networks-internet of things. In International Conference on Future Intelligent Vehicular Technologies (pp. 167–174). Cham, Switzerland: Springer.

    Google Scholar 

  8. Han, G., Yang, X., Liu, L., Guizani, M., & Zhang, W. (2017). A disaster management-oriented path planning for mobile anchor node-based localization in wireless sensor networks. IEEE Transactions on Emerging Topics in Computing.

    Google Scholar 

  9. Jan, M. A., Khan, F., Alam, M., & Usman, M. (2017). A payload-based mutual authentication scheme for internet of things. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2017.08.035.

    Article  Google Scholar 

  10. Jia, X., Feng, Q., Fan, T., & Lei, Q. (2012). RFID technology and its applications in Internet of Things (IoT). In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (pp. 1282–1285).

    Google Scholar 

  11. Armbrust, M., Fox, A., Griffith, R., Joseph, A., & Katz, R. (2010). Above the clouds: A Berkeley view of cloud computing (Tech. Rep. UCB) (pp. 07–013). Berkeley, CA: University of California.

    Google Scholar 

  12. Khan, F., ur Rahman, I., Khan, M., Iqbal, N., & Alam, M. (2016, September). CoAP-based request-response interaction model for the internet of things. In International Conference on Future Intelligent Vehicular Technologies (pp. 146–156). Cham, Switzerland: Springer.

    Google Scholar 

  13. Wattegama, C. (2014). ICT for Disaster Management. http://en.wikibooks.org/wiki/ICT_for_Disaster_Management.

  14. Sookhak, M., Akhundzada, A., Sookhak, A., Eslaminejad, M., Gani, A., Khan, M. K., et al. (2015). Geographic wormhole detection in wireless sensor networks. PLoS One, 10(1), e0115324.

    Article  Google Scholar 

  15. Sookhak, M., Akhunzada, A., Gani, A., Khurram Khan, M., & Anuar, N. B. (2014). Towards dynamic remote data auditing in computational clouds. The Scientific World Journal, 2014, 269357.

    Article  Google Scholar 

  16. Abdelaziz, A., Fong, A. T., Gani, A., Garba, U., Khan, S., Akhunzada, A., et al. (2017). Distributed controller clustering in software defined networks. PLoS One, 12(4), e0174715.

    Article  Google Scholar 

  17. Akhunzada, A., Gani, A., Hussain, S., & Khan, A. A. (2016). A formal framework for web service broker to compose QoS measures. In SAI Intelligent Systems Conference (IntelliSys), 2015. Piscataway, NJ: IEEE.

    Google Scholar 

  18. Jan, M., Nanda, P., Usman, M., & He, X. (2017). PAWN: A payload-based mutual authentication scheme for wireless sensor networks. Concurrency and Computation: Practice and Experience, 29(17), e3986.

    Article  Google Scholar 

  19. Akhunzada, A., Gani, A., Hussain, S., & Khan, A. A. (2015). Towards experiencing the pair programming as a practice of the Rational Unified Process (RUP). In SAI Intelligent Systems Conference (IntelliSys), 2015. Piscataway, NJ: IEEE.

    Google Scholar 

  20. Usman, N., Javaid, Q., Akhunzada, A., Choo, K. K. R., Usman, S., Sher, A., et al. (2017). A novel internet of things-centric framework to mine malicious frequent patterns. IEEE Access, PP(99), 1–1. https://doi.org/10.1109/ACCESS.2017.2690456.

    Article  Google Scholar 

  21. Akhunzada, A., Ahmed, E., Gani, A., Khan, M. K., Imran, M., & Guizani, S. (2015). Securing software defined networks: Taxonomy, requirements, and open issues. IEEE Communications Magazine, 53(4), 36–44.

    Article  Google Scholar 

  22. Akhunzada, A., & Khan, M. K. (2017). Toward secure software defined vehicular networks: Taxonomy, requirements, and open issues. IEEE Communications Magazine, 55(7), 110–118.

    Article  Google Scholar 

  23. Khan, F., ur Rehman, A., Usman, M., Tan, Z., & Puthal, D. (2018). Performance of cognitive radio sensor networks using hybrid automatic repeat request: Stop-and-wait. Mobile Networks and Applications, 23, 1–10.

    Article  Google Scholar 

  24. Liu, J., Wen, J., Yang, K., Shang, Z., & Zhang, H. (2011). GIS-based analysis of flood disaster risk in LECZ of China and population exposure. In Proceedings of the 2011 19th International Conference on GeoInformatics, Geoinformatics 2011, no. 40471028 (pp. 0–3).

    Google Scholar 

  25. Seal, V., Raha, A., Maity, S., Mitra, S. K., Mukherjee, A., & Naskar, M. K. (2012). A real time multivariate robust regression based flood prediction model using polynomial approximation for wireless sensor network based flood forecasting systems (pp. 432–441). Berlin/Heidelberg, Germany: Springer.

    Google Scholar 

  26. Ahmad, N., Hussain, M., Riaz, N., Subhani, F., Haider, S., Alamgir, K. S., et al. (2013). Flood prediction and disaster risk analysis using GIS based wireless sensor networks, a review. Journal of Basic and Applied Scientific Research, 3(8), 632–643.

    Google Scholar 

  27. Sulaiman, N. A., Husain, F., Hashim, K. A., & Samad, A. M. (2012). A study on flood risk assessment for Bandar Segamat sustainability using remote sensing and GIS approach. In 2012 IEEE Control and System Graduate Research Colloquium (pp. 386–391).

    Google Scholar 

  28. Khattak, M. I., Edwards, R. M., Shafi, M., Ahmed, S., Shaikh, R., & Khan, F. (2018). Wet environmental conditions affecting narrow band on-body communication channel for WBANs. Adhoc & Sensor Wireless Networks, 40, 297–312.

    Google Scholar 

  29. Akar, Î., Kalkan, K., & Maktav, D. (2011). Determination of land use effects on flood risk by using integration of GIS and remote sensing. In Recent advances in space technologies.

    Google Scholar 

  30. Jan, M. A., Nanda, P., He, X., & Liu, R. P. (2013, November). Enhancing lifetime and quality of data in cluster-based hierarchical routing protocol for wireless sensor network. In 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC) (pp. 1400–1407). Zhangjiajie, China: IEEE.

    Google Scholar 

  31. Sherief, Y. (2010). Flash floods and their effects on the development in El-Qaá plain area in South Sinai, Egypt. Diss. PhD dissertation, University of Mainz, Germany.

    Google Scholar 

  32. Fang, S., Xu, L., Zhu, Y., Liu, Y., Liu, Z., Pei, H., et al. (2015). An integrated information system for snowmelt flood early-warning based on internet of things. Information Systems Frontiers, 17(2), 321–335.

    Article  Google Scholar 

  33. Jan, M. A., Tan, Z., He, X., & Ni, W. (2018). Moving towards highly reliable and effective sensor networks.

    Google Scholar 

  34. Liao, Z., Hong, Y., Wang, J., Fukuoka, H., Sassa, K., Karnawati, D., et al. (2010). Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides, 7(3), 317–324.

    Article  Google Scholar 

  35. Kubo, T., Hisada, Y., Murakami, M., Kosuge, F., & Hamano, K. (2011). Application of an earthquake early warning system and a al-time strong motion monitoring system in emergency response in a high-rise building. Soil Dynamics and Earthquake Engineering, 31(2), 231–239.

    Article  Google Scholar 

  36. Guo, H., Liang, F., & Liu, Y. (2012). Research on sensor cooperation for distributed emergency response system. Journal of Networks, 7(4), 683–690.

    Article  Google Scholar 

  37. Khan, I., Belqasmi, F., Glitho, R., & Crespi, N. (2013). A multi-layer architecture for wireless sensor network virtualization. In 6th Joint IFIP Wireless and Mobile Networking Conference (pp. 1–4).

    Google Scholar 

  38. Arjun, D. S., Bala, A., Dwarakanath, V., Sampada, K. S., BB, P. R., & Pasupuleti, H. (2015, June). Integrating cloud-WSN to analyze weather data and notify SaaS user alerts during weather disasters. In Advance computing conference (IACC), 2015 IEEE international (pp. 899–904).

    Chapter  Google Scholar 

  39. Mir, K., & Hira Fatima, S. (2014). Earthquake auto-SMS alert system – a case study of Pakistan, The 2nd International Conference on Applied Information and Communications Technology - ICAICT.

    Google Scholar 

  40. Jan, M. A., Jan, S. R. U., Alam, M., Akhunzada, A., & Rahman, I. U. (2018). A comprehensive analysis of congestion control protocols in wireless sensor networks. Mobile Networks and Applications, 23, 1–13.

    Article  Google Scholar 

  41. Wu, Y.-M., & Kanamori, H. (2008). Development of an earthquake early warning system using real-time strong motion signals. Sensors, 8(1), 1–9.

    Article  Google Scholar 

  42. Peng, H., Wu, Z., Wu, Y.-M., Yu, S., Zhang, D., & Huang, W. (2011). Developing a prototype earthquake early warning system in the Beijing Capital Region. Seismological Research Letters, 82(3), 394–403.

    Article  Google Scholar 

  43. Singh, R. D., Kumari, P., Singh, P., Balwant, R., Engineering, S., & Campus, T. (2014). Seismic early warning alert system. In International Conference on Signal Processing and Integrated Networks (pp. 601–605).

    Google Scholar 

  44. Bessis, N., Asimakopoulou, E., French, T., Norrington, P., & Xhafa, F. (2010). The big picture, from grids and clouds to crowds: A data collective computational intelligence case proposal for managing disasters. In Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2010), no. Section II. (pp. 351–356).

    Google Scholar 

  45. Bessis, N. (2010). Grid technology for maximizing collaborative decision management and support: Advancing effective virtual organizations. Hershey, PA: IGI Global.

    Google Scholar 

  46. Deak, G., Curran, K., Condell, J., Asimakopoulou, E., & Bessis, N. (2013). IoTs (internet of things) and DfPL (device-free passive localisation) in a disaster management scenario. Simulation Modelling Practice and Theory, 35, 86–96.

    Article  Google Scholar 

  47. Khan, F., Bashir, F., & Nakagawa, K. (2012). Dual head clustering scheme in wireless sensor networks. In 2012 International Conference on Emerging Technologies (ICET) (pp. 1–5). Islamabad, Pakistan: IEEE.

    Google Scholar 

  48. Yang, L., Yang, S. H., & Plotnick, L. (2013). How the internet of things technology enhances emergency response operations. Technological Forecasting and Social Change, 80(9), 1854–1867.

    Article  Google Scholar 

  49. Fazio, M., Celesti, A., Puliafito, A., & Villari, M. (2014). An integrated system for advanced multi-risk management based on cloud for IoT (pp. 253–269). Cham, Switzerland: Springer.

    Google Scholar 

  50. Khan, F. (2014). Secure communication and routing architecture in wireless sensor networks. In 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE) (pp. 647–650). Tokyo, Japan: IEEE.

    Google Scholar 

  51. Jabeen, Q., Khan, F., Khan, S., & Jan, M. A. (2016). Performance improvement in multihop wireless mobile adhoc networks. The Journal Applied, Environmental, and Biological Sciences (JAEBS), 6(4S), 82–92.

    Google Scholar 

  52. Du, C., & Zhu, S. (2012). Research on urban public safety emergency management early warning system based on technologies for the internet of things. Procedia Engineering, 45(2011), 748–754.

    Article  Google Scholar 

  53. Wang, J., Tepfenhart, W., & Rosca, D. (2010). Emergency response workflow resource requirements modeling and analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(3), 270–283.

    Article  Google Scholar 

  54. Wang, J., Rosca, D., Tepfenhart, W., Milewski, A., & Stoute, M. (2011). Dynamic workflow modeling and analysis in incident command systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(5), 1041–1055.

    Article  Google Scholar 

  55. Tran, T., Yousaf, F. Z., & Wietfeld, C. (2010). RFID based secure mobile communication framework for emergency response management. In Wireless Communications and Networking Conference (WCNC), 2010 IEEE.

    Google Scholar 

  56. Aziz, Z., Peña-Mora, F., Chen, A., & Lantz, T. (2012). Supporting urban emergency response and recovery using RFID-based building assessment. Disaster Prevention and Management, 18(1), 35–48.

    Article  Google Scholar 

  57. Fida, N., Khan, F., Jan, M. A., & Khan, Z. (2016, September). Performance analysis of vehicular adhoc network using different highway traffic scenarios in cloud computing. In International Conference on Future Intelligent Vehicular Technologies (pp. 157–166). Cham, Switzerland: Springer.

    Google Scholar 

  58. Wickler, G., & Potter, S. (2010). Information-gathering: From sensor data to decision support in three simple steps. Information Systems Journal, 3(1), 1–42.

    Google Scholar 

  59. Yang, L., Prasanna, R., & King, M. (2011). On-site information systems design for emergency first responders. Journal of Information Technology Theory and Application, 10(1), 5–27.

    Google Scholar 

  60. Du Chunquan, J., Shunbing, Z., & Qiuping, W. (2010). Study and prospect on the application of internet of things in perceiving safety. China Safety Science Journal, 20, 164–170.

    Google Scholar 

  61. Alam, M., Ferreira, J., Mumtaz, S., Jan, M. A., Rebelo, R., & Fonseca, J. A. (2017). Smart cameras are making our beaches safer: A 5G-envisioned distributed architecture for safe, connected coastal areas. IEEE Vehicular Technology Magazine, 12(4), 50–59.

    Article  Google Scholar 

  62. Sagun, A., Bouchlaghem, D., & Anumba, C. (2010). A scenario-based study on information flow and collaboration patterns in disaster management. Disasters, 33(2), 214–238.

    Article  Google Scholar 

  63. Shaluf, I. M. (2011). Technological disaster stages and management. Disaster Prevention and Management, 17(1), 114–126.

    Article  Google Scholar 

  64. Zelenkauskaite, A., Bessis, N., Sotiriadis, S., & Asimakopoulou, E. (2012). Disaster management and profile modelling of IoT objects: Conceptual parameters for interlinked objects in relation to social network analysis. In Proceedings of the 2012 International Conference on Intelligent Networking and Collaborative Systems (INCoS 2012) (pp. 509–514).

    Google Scholar 

  65. Shamszaman, Z. U., Ara, S. S., Chong, I., & Jeong, Y. K. (2014). Web-of-objects (WoO)-based context aware emergency fire management systems for the internet of things. Sensors (Switzerland), 14(2), 2944–2966.

    Article  Google Scholar 

  66. Adomavicius, G., & Tuzhilin, A. (2010). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.

    Article  Google Scholar 

  67. Han, S. N., Lee, G. M., & Crespi, N. (2014). Semantic context-aware service composition for building automation system. IEEE Transactions on Industrial Informatics, 10(1), 252–261.

    Article  Google Scholar 

  68. Xu, R., Yang, L., & Yang, S.-H. (2013). Architecture design of internet of things in logistics management for emergency response. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 395–402).

    Google Scholar 

  69. Yang, H., Yang, L., & Yang, S. (2011). Hybrid Zigbee RFID sensor network for humanitarian logistics Centre management. Journal of Network and Computer Applications, 34(3), 938–948.

    Article  Google Scholar 

  70. Fajardo, J. T. B., & Oppus, C. M. (2011). A mobile disaster management system using the andriod technology. International Journal of Communication, 3(3), 77–86.

    Google Scholar 

  71. Walle, B., Eede, G. V., & Muhren, W. (2010). Humanitarian information management and systems, mobile response. In Second International Workshop on Mobile Information Technology for Emergency Response 2008, Bonn, Germany, May 29–38, 2008. Revised Selected Papers. Cham, Switzerland: Springer.

    Google Scholar 

  72. Akhunzada, A., Gani, A., Anuar, N. B., Abdelaziz, A., Khan, M. K., Hayat, A., et al. (2016). Secure and dependable software defined networks. Journal of Network and Computer Applications, 61, 199–221.

    Article  Google Scholar 

  73. Akhunzada, A., Sookhak, M., Anuar, N. B., Gani, A., Ahmed, E., Shiraz, M., et al. (2015). Man-at-the-end attacks: Analysis, taxonomy, human aspects, motivation and future directions. Journal of Network and Computer Applications, 48, 44–57.

    Article  Google Scholar 

  74. Sookhak, M., Gani, A., Talebian, H., Akhunzada, A., Khan, S. U., Buyya, R., et al. (2015). Remote data auditing in cloud computing environments: A survey, taxonomy, and open issues. ACM Computing Surveys (CSUR), 47(4), 65.

    Article  Google Scholar 

  75. Alam, K. A., Ahmad, R., Akhunzada, A., Nasir, M. H. N. M., & Khan, S. U. (2015). Impact analysis and change propagation in service-oriented enterprises: A systematic review. Information Systems, 54, 43–73.

    Article  Google Scholar 

  76. Al-Turjman, F. (2017). Cognitive routing protocol for disaster-inspired internet of things. Future Generation Computer Systems.

    Google Scholar 

  77. Cheng, J. W., & Mitomo, H. (2017). The underlying factors of the perceived usefulness of using smart wearable devices for disaster applications. Telematics and Informatics, 34(2), 528–539.

    Article  Google Scholar 

  78. Kamruzzaman, M., Sarkar, N. I., Gutierrez, J., & Ray, S. K. (2017). A study of IoT-based post-disaster management. In 2017 International Conference on Information Networking (ICOIN). Piscataway, NJ: IEEE.

    Google Scholar 

  79. Choe, S., Park, J., Han, S., Park, J., & Yun, H. (2017). A study on the real-time management and monitoring process for recovery resources using internet of things. International Research Journal of Engineering and Technology (IRJET), 04(3).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Wahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zafar, U., Shah, M.A., Wahid, A., Akhunzada, A., Arif, S. (2019). Exploring IoT Applications for Disaster Management: Identifying Key Factors and Proposing Future Directions. In: Jan, M., Khan, F., Alam, M. (eds) Recent Trends and Advances in Wireless and IoT-enabled Networks. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-99966-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99966-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99965-4

  • Online ISBN: 978-3-319-99966-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics