Skip to main content

Properties of Monolayer Silicene on Ag(111)

  • Chapter
  • First Online:
Book cover Silicene

Part of the book series: NanoScience and Technology ((NANO))

  • 776 Accesses

Abstract

The expected properties of silicene and their theoretical background have already been discussed in Chaps. 13 and the different ways to synthesize this new 2D material in Chap. 5. It has already been mentioned that such a synthesis requires an adequate substrate material to accommodate the formation of a one-atom-thin silicon layer. Such a material is silver, in particular the Ag(111) surface plane. In this chapter the formation and properties of silicene formed epitaxially on the Ag(111)(\(1\times 1\)) surface are discussed. We will see that the properties of these silicene layers are modified with respect to the ones of free-standing silicene, due to the interaction with the substrate. For this reason we will refer to it as epitaxial silicene and look in detail at its two-dimensional (2D) character. A more detailed look at the formation of Si layers on Ag(111) shows that, depending on the specific preparation conditions, several 2D Si phase can be formed. Differences and similarities of these structures will be discussed. Furthermore, we will draw the intention on the chemical and temperature stability of these epitaxial silicene layers and unveil the limits for the silicene formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the meantime a model has been suggested, which is based on a pentagonal arrangement of Si atoms in interconnected rings, forming the SiNRs along the missing rows of the reconstructed Ag(110) surface [8].

  2. 2.

    In a simple linear chain model of harmonic oscillators the frequency \(\omega \) is given proportional to \(\sqrt{ D\over m}\), where D is the spring constant and m the mass.

References

  1. K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994)

    Article  ADS  Google Scholar 

  2. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007)

    Google Scholar 

  3. A. Kara et al., J. Supercond. Nov. Magn. 22, 259 (2009)

    Article  Google Scholar 

  4. H. Sahaf et al., Appl. Phys. Lett. 90, 263110 (2007)

    Article  ADS  Google Scholar 

  5. P. De Padova et al., Appl. Phys. Lett. 96, 261905 (2010)

    Article  ADS  Google Scholar 

  6. P. De Padova et al., Nano Lett. 8, 271 (2008)

    Article  ADS  Google Scholar 

  7. P. De Padova, C. Quaresima, B. Olivieri, P. Perfetti, G. Le Lay, Appl. Phys. Lett. 98, 081909 (2011)

    Article  ADS  Google Scholar 

  8. J.I. Cerdá et al., Nat. Commun. 7, 13076 (2016)

    Article  ADS  Google Scholar 

  9. P. Vogt et al., Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  10. C.-L. Lin et al., Appl. Phys. Express 5, 045802 (2012)

    Article  ADS  Google Scholar 

  11. B. Feng et al., Nano Lett. 12, 3507 (2012)

    Article  ADS  Google Scholar 

  12. A. Fleurence et al., Phys. Rev. Lett. 108, 245501 (2012)

    Article  ADS  Google Scholar 

  13. L. Meng et al., Nano Lett. 13, 685 (2013)

    Article  ADS  Google Scholar 

  14. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  15. T. Suzuki, Y. Yokomizo, Physica E 42, 2820 (2010)

    Article  ADS  Google Scholar 

  16. M. Kira, T. Iwamoto, Progress in the chemistry of stable disilenes, in Advances in Organometallic Chemistry, ed. by R. West, A.F. Hill, vol. 54. (Elsevier, Academic Press, 2006), pp. 73–148

    Google Scholar 

  17. M. Kira, Proc. Jpn. Acad. Ser. B 88, 167 (2012)

    Google Scholar 

  18. D. Solonenko, et al., 2D Mater. 4, 015008 (2017)

    Google Scholar 

  19. T.R. Hart, R.L. Aggarwal, B. Lax, Phys. Rev. B 1, 638 (1970)

    Article  ADS  Google Scholar 

  20. U. Monteverde et al., Carbon 91, 266 (2015)

    Article  Google Scholar 

  21. D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, A. Molle, Adv. Mat. 24, 5088 (2012)

    Article  Google Scholar 

  22. H. Jamgotchian, J. Phys. Condens. Mat. 24, 172001 (2012)

    Article  ADS  Google Scholar 

  23. R. Arafune et al., Surf. Sci. 608, 297 (2013)

    Article  ADS  Google Scholar 

  24. A. Resta, Sci. Rep. 3, 2399 (2013)

    Article  Google Scholar 

  25. Y. Fukaya et al., Phys. Rev. B 88, 205413 (2013)

    Article  ADS  Google Scholar 

  26. K. Kawahara et al., Surf. Sci. 623, 25 (2014)

    Article  ADS  Google Scholar 

  27. D. Tsoutsou, E. Xenogiannopoulou, E. Golias, P. Tsipas, A. Dimoulas, Appl. Phys. Lett. 103, 231604 (2013)

    Article  ADS  Google Scholar 

  28. J. Avila, J. Phys. Condens. Mat. 25, 262001 (2013)

    Article  ADS  Google Scholar 

  29. P.D. Padova, J. Phys. Condens. Mat. 25, 382202 (2013)

    Article  Google Scholar 

  30. D. Solonenko, O.D. Gordan, G. Le Lay, D.R.T. Zahn, P. Vogt. Beilstein J. Nanotechnol. 8, 1357 (2017)

    Article  Google Scholar 

  31. S. Sheng, J.B. Wu, X. Cong, W. Li, J. Gou, Q. Zhong, P. Cheng, P.H. Tan, L. Chen, K. Wu. Phys. Rev. Lett. 119, 196803 (2017)

    Google Scholar 

  32. G. Prévot, R. Bernard, H. Cruguel, Y. Borensztein, Appl. Phys. Lett. 105, 213106 (2014)

    Article  ADS  Google Scholar 

  33. R. Bernard, Y. Borensztein, H. Cruguel, M. Lazzeri, G. Prévot, Phys. Rev. B 92 (2015)

    Google Scholar 

  34. Z. Iqbal, S. Veprek, J. Phys. C Solid State Phys. 15, 377 (1982)

    Article  ADS  Google Scholar 

  35. T. Ishidate, K. Inoue, K. Tsuji, S. Minomura, Sol. Stat. Commun. 42, 197 (1982)

    Article  ADS  Google Scholar 

  36. K. Wu, X.Q. Yan, M.W. Chen, Appl. Phys. Lett. 91, 101903 (2007)

    Article  ADS  Google Scholar 

  37. M. Satta, S. Colonna, R. Flammini, A. Cricenti, F. Ronci, Phys. Rev. Lett. 115, 026102 (2015)

    Article  ADS  Google Scholar 

  38. S.H. Chou et al., J. Chem. Phys. 89, 5177 (1988)

    Article  ADS  Google Scholar 

  39. Z.-L. Liu, New J. Phys. 16, 075006 (2014)

    Article  ADS  Google Scholar 

  40. A. Acun, B. Poelsema, H.J.W. Zandvliet, R.V. Gastel, Appl. Phys. Lett. 103 263119 (2013)

    Article  ADS  Google Scholar 

  41. P. Vogt et al., Appl. Phys. Lett. 104, 021602 (2014)

    Article  ADS  Google Scholar 

  42. J. Tersoff, D.R. Hamann, Phys. Rev. Lett. 50, 1998 (1983)

    Article  ADS  Google Scholar 

  43. J. Tersoff, D.R. Hamann, Phys. Rev. B 31, 805 (1985)

    Article  ADS  Google Scholar 

  44. M.K.R. Hoffmann, J. Sol. Stat. Chem. 54, 313 (1984)

    Article  ADS  Google Scholar 

  45. D. Kaltsas, L. Tsetseris, A. Dimoulas, J. Phys. Condens. Mat. 24, 442001 (2012)

    Article  ADS  Google Scholar 

  46. J. Gao, J. Zhao, Sci. Rep. 2, 861 (2012)

    Article  ADS  Google Scholar 

  47. P. Pflugradt, L. Matthes, F. Bechstedt, Phys. Rev. B 89, 035403 (2014)

    Article  ADS  Google Scholar 

  48. Z.-X. Guo, S. Furuya, J.-i. Iwata, A. Oshiyama, Phys. Rev. B 87 (2013)

    Google Scholar 

  49. K.R. Knox et al., Phys. Rev. B 78, 201408 (2008)

    Article  ADS  Google Scholar 

  50. N.W. Johnson, Adv. Funct. Mater. 24, 5253 (2014)

    Article  Google Scholar 

  51. S.Y. Zhou, Nat. Mater. 7, 259 (2008)

    Article  ADS  Google Scholar 

  52. C.-L. Lin et al., Phys. Rev. Lett. 110, 076801 (2013)

    Article  ADS  Google Scholar 

  53. S. Huang, W. Kang, L. Yang, Appl. Phys. Lett. 102, 133106 (2013)

    Article  ADS  Google Scholar 

  54. Y.-P. Wang, H.-P. Cheng, Phys. Rev. B 87, 245430 (2013)

    Article  ADS  Google Scholar 

  55. P. Gori, O. Pulci, F. Ronci, S. Colonna, F. Bechstedt, J. Appl. Phys. 114, 113710 (2013)

    Article  ADS  Google Scholar 

  56. S. Cahangirov et al., Phys. Rev. B 88, 035432 (2013)

    Article  ADS  Google Scholar 

  57. Y. Feng et al., PNAS 118, 14656–14661 (2016)

    Article  ADS  Google Scholar 

  58. J. Zhuang et al., Phys. Rev. B 91, 161409(R) (2015)

    Article  ADS  Google Scholar 

  59. E. Cinquanta et al., J. Phys. Chem. C 117, 16719 (2013)

    Article  Google Scholar 

  60. C. Lee et al., ACS Nano 4, 2695 (2010)

    Article  Google Scholar 

  61. P. Tonndorf et al., Optics Express 21, 4908 (2013)

    Article  ADS  Google Scholar 

  62. H.B. Ribeiro et al., Nat. Commun. 7, 12191 (2016)

    Article  ADS  Google Scholar 

  63. A. Allard, L. Wirtz, Nano Lett. 10, 4335 (2010)

    Article  ADS  Google Scholar 

  64. J.-A. Yan, R. Stein, D.M. Schaefer, X.-Q. Wang, M.Y. Chou, Phys. Rev. B 88, 121403(R) (2013)

    Article  ADS  Google Scholar 

  65. P. Gori, O. Pulci, R.d.L. Vollaro, C. Guattari, Energy Procedia 45 512 (2014)

    Article  Google Scholar 

  66. X. Li et al., Phys. Rev. B 87, 115418 (2013)

    Article  ADS  Google Scholar 

  67. H. Richter, Z.P. Wang, L. Ley, Sol. Stat. Commun. 39, 625 (1981)

    Article  ADS  Google Scholar 

  68. J. Menéndez, M. Cardona, Phys. Rev. B 29, 2051 (1984)

    Article  ADS  Google Scholar 

  69. J. Ribeiro-Soares, R.M. Almeida, L.G. Cançado, M.S. Dresselhaus, A. Jorio, Phys. Rev. B 91, 205421 (2015)

    Article  ADS  Google Scholar 

  70. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Nano Lett. 7, 2645 (2007)

    Article  ADS  Google Scholar 

  71. S. Sahoo, A.P.S. Gaur, M. Ahmadi, M.J.-F. Guinel, R.S. Katiyar, J. Phys. Chem. C 117, 9042 (2013)

    Article  Google Scholar 

  72. I.H. Campbell, P.M. Fauchet, Sol. Stat. Commun. 58, 739 (1986)

    Article  ADS  Google Scholar 

  73. S. Périchon, V. Lysenko, B. Remaki, D. Barbier, B. Champagnon, J. Appl. Phys. 86, 4700 (1999)

    Article  ADS  Google Scholar 

  74. E.S. Zouboulis, M. Grimsditch, Phys. Rev. B 43, 12490 (1991)

    Article  ADS  Google Scholar 

  75. A.C. Ferrari, Sol. Stat. Commun. 143, 47 (2007)

    Article  ADS  Google Scholar 

  76. H. Jamgotchian, J. Phys. Condens. Mat. 27, 395002 (2015)

    Article  Google Scholar 

  77. H. Jamgotchian, J. Phys. Conf. Ser. 491, 012001 (2014)

    Article  Google Scholar 

  78. W. Wang, W. Olovsson, R.I.G. Uhrberg, Phys. Rev. B 92, 205427 (2015)

    Article  ADS  Google Scholar 

  79. M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G.L. Lay, New J. Phys. 16, 095002 (2014)

    Article  ADS  Google Scholar 

  80. F.-F. Zhu et al., Nat. Mat. 14, 1020 (2015)

    Article  Google Scholar 

  81. S. Saxena, R.P. Chaudhary, S. Shukla, Sci. Rep. 6, 31073 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) under Heisenberg Grant No. VO1261/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogt, P. (2018). Properties of Monolayer Silicene on Ag(111). In: Vogt, P., Le Lay, G. (eds) Silicene. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99964-7_7

Download citation

Publish with us

Policies and ethics