Skip to main content

Si Nanoribbons: From 1D to 3D Nanostructures

  • Chapter
  • First Online:
Silicene

Part of the book series: NanoScience and Technology ((NANO))

  • 756 Accesses

Abstract

In this chapter we give an overview on the theoretical and experimental investigations of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) Si nanoribbons (SiNRs) formed on the anisotropic Ag(110) substrate surface. We start by introducing briefly free-standing silicene, a silicon layer with Si atoms arranged in honeycomb lattice, with hexagonal Si-rings as structural units. These hexagonal Si units are subsequently discussed as possible candidates to explain the atomic arrangement of the experimentally synthesized Si nanoribbons on Ag(110). This interpretation is supported by properties such as the presence of the 1D projection of the π and π* bands, forming the so-called “Dirac cones” at the K points of the Brillouin zone, the sp2-like nature of the Si valence orbitals, and the strong resistance against oxidation. Besides these results, the atomic structure as well as the origin of the electronic properties of these Si nanoribbons are still controversially debated in the literature. We address this discussion in the last part of the chapter before summarizing it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mat. 8, 183 (2007)

    Article  Google Scholar 

  2. F. Wöhler, Ann. Chem. Pharm. 127, 257 (1863)

    Article  Google Scholar 

  3. A. Weiss, G. Beil, H. Meyer, Z. Naturforsch. 35b, 25 (1979)

    Google Scholar 

  4. K. Takeda, K. Shiraishi, Phys. Rev. B 39, 11028 (1989); Solid State Commun. 85, 301 (1993)

    Google Scholar 

  5. U. Dettlaff-Weglikowska, W. Hönle, A. Molassioti-Dohms, S. Finkbeiner, J. Weber, Phys. Rev. B 56, 13132 (1997)

    Article  ADS  Google Scholar 

  6. I. Manners, Angew. Chem. Int. Ed. Engl. 35, 1602 (1996)

    Article  Google Scholar 

  7. H. Nakano, T. Mitsuoka. M. Harada, K. Horibuchi, H. Nozaki, N. Takahaschi, T. Nonaka, Y. Seno, H. Nakamura, Angew. Chem. Int. Ed. 45, 6303 (2006)

    Article  Google Scholar 

  8. K.H. Janzon, H. Schäfer, A. Weiss, Z. Anorg, Allg. Chem. 372, 87 (1970)

    Article  Google Scholar 

  9. A.F. Wells, Structural Inorganic Chemistry, 5th edn. (Clarendon, Oxford, 1984)

    Google Scholar 

  10. K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994)

    Article  ADS  Google Scholar 

  11. Y.C. Wang, K. Scheerschmidt, U. Gösele, Phys. Rev. B 61, 12864 (2000)

    Article  ADS  Google Scholar 

  12. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007)

    Google Scholar 

  13. S. Lebègue, O. Eriksson, Phys. Rev. B 79, 115409 (2009)

    Article  ADS  Google Scholar 

  14. S. Cahangirov, M. Topsakal, E. Aktuerk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  15. S. Cahangirov, M. Topsakal, S. Ciraci, Phys. Rev. B 81, 95120 (2010)

    Article  ADS  Google Scholar 

  16. Y. Ding, J. Ni, Appl. Phys. Lett. 95, 083115 (2009)

    Article  ADS  Google Scholar 

  17. Y.L. Song, Y. Zhang, J.M. Zhang, D.-B. Lu, Appl. Surf. Sci. 256, 6313 (2010)

    Article  ADS  Google Scholar 

  18. M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 98, 223107 (2011)

    Article  ADS  Google Scholar 

  19. C. Xu, Luo, Q. Liu, J. Zheng, Z. Zhang, S. Nagase, Z. Gao, J. Lu, Nanoscale 4, 3111 (2012)

    Article  ADS  Google Scholar 

  20. Y.C. Cheng, Z.Y. Zhu, U. Schwingenschlögl, Eur. Phys. Lett. 95, 17005 (2011)

    Article  ADS  Google Scholar 

  21. L. Ma, J.-M. Zhang, K.-W. Xu, V. Ji, Physica B 425, 66 (2013)

    Google Scholar 

  22. L. Ma, J.-M. Zhang, K.-W. Xu, V. Ji, Physica E 60, 112 (2014)

    Google Scholar 

  23. M. Ezawa, New J. Phys. 14, 033300 (2014)

    Google Scholar 

  24. N.B. Le, T.D. Huan, L.M. Woods, Phys. Rev. Appl. 1, 054002 (2014)

    Article  ADS  Google Scholar 

  25. S. Dutta, K. Wakabayashi, Jpn. J. Appl. Phys. 53, 06JD01 (2014)

    Article  Google Scholar 

  26. G. Li, J. Tan, X. Liu, X. Wang, F. Li, M. Zhao, Chem. Phys. Lett. 595, 20 (2014)

    Article  ADS  Google Scholar 

  27. H. Sadegni, S. Bailey, C.J. Lambert, Appl. Phys. Lett. 104, 103104 (2014)

    Article  ADS  Google Scholar 

  28. A. Kara, C. Léandri, M.E. Dávila, P. De Padova, B. Ealet, H. Oughaddou, B. Aufray, G. Le Lay, J. Supercond. Novel Mater. 22, 259 (2009); G. Le Lay, B. Aufray, C. Léandri, H. Oughaddou, J.P. Bibérian, P. De Padova, M.E. Dávila, B. Ealet, A. Kara, Appl. Surf. Sci. 256, 524 (2009); B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, G. Le Lay, Appl. Phys. Lett. 96, 183102 (2010); A. Kara, S. Vizzini, C. Léandri, B. Ealet, H. Oughaddou, B. Aufray, G. Le Lay, Phys. Condens. Matter 22, 045004 (2010)

    Google Scholar 

  29. C. Léandri, G. Le Lay, B. Aufray, C. Girardeaux, C.J. Avila, M.E. Dávila, M.C. Asensio, C. Ottaviani, A. Cricenti, Surf. Sci. Lett. 574, L9 (2005)

    Article  ADS  Google Scholar 

  30. H. Sahaf, L. Masson, C. Léandri, B. Aufray, G. Le Lay, F. Ronci, Appl. Phys. Lett. 90, 263110 (2007)

    Article  ADS  Google Scholar 

  31. P. De Padova, C. Quaresima, P. Perfetti, B. Olivieri, C. Léandri, B. Aufray, S. Vizzini, G. Le Lay, Nano Lett. 8, 271 (2008)

    Article  ADS  Google Scholar 

  32. P. De Padova et al., Appl. Phys. Lett. 96, 261905 (2010)

    Article  ADS  Google Scholar 

  33. F. Ronci, S. Colonna, A. Cricenti, P. De Padova, C. Ottaviani, C. Quaresima, B. Aufray, G. Le Lay, Phys. Status Solidi C 7, 2716 (2010)

    Article  ADS  Google Scholar 

  34. P. De Padova, C. Quaresima, B. Olivieri, P. Perfetti, G. Le Lay, Appl. Phys. Lett. 98, 081909 (2011)

    Article  ADS  Google Scholar 

  35. P. De Padova, C. Léandri, S. Vizzini, C. Quaresima, P. Perfetti, B. Olivieri, H. Oughaddou, B. Aufray, G. Le Lay, Nano Lett. 8, 2299 (2008)

    Article  ADS  Google Scholar 

  36. M.E. Dávila, A Marele, P. De Padova, I. Montero, F. Hennies, A. Pietzsch, M.N. Shariati, J.M. Gómez-Rodríguezand, G. Le Lay, Nanotechnology 23, 385703 (2012)

    Article  ADS  Google Scholar 

  37. P. De Padova, C. Quaresima, B. Olivieri, P. Perfetti, G. Le Lay, J. Phys. D: Appl. Phys. Fast Track Commun. 44, 312001 (2011)

    Article  Google Scholar 

  38. P. De Padova P. Perfetti, B. Olivieri, C. Quaresima, C. Ottaviani, G. Le Lay, J. Phys. Condens. Matter 24, 223001 (2012)

    ADS  Google Scholar 

  39. P. De Padova, O. Kubo, B. Olivieri, C. Quaresima, T. Nakayama, M. Aono, G. Le Lay, Nano Lett. 12, 5500 (2012)

    Article  ADS  Google Scholar 

  40. R. Bernard, T. Leoni, A. Wilson, T. Lelaidier, H. Sahaf, E. Moyen, L. Assaud, L. Santinacci, F. Leroy, F. Cheynis, A. Ranguis, H. Jamgotchian, C. Becker, Y. Borensztein, M. Hanbücken, G. Prévot, L. Masson, Phys. Rev. B 88, 121411 (2013)

    Google Scholar 

  41. E. Speiser, B. Buick, N. Esser, W. Richter, S. Colonna, A. Cricenti, F. Ronci, Appl. Phys. Lett. 104, 161612 (2014)

    Article  ADS  Google Scholar 

  42. E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, A. Stesmans, Nano Res. 6, 19 (2013)

    Google Scholar 

  43. F. Ronci, G. Serrano, P. Gori, A. Cricenti, S. Colonna, Phys. Rev. B 89, 115437 (2014)

    Article  ADS  Google Scholar 

  44. Y. Borensztein, G, Prévot, L. Masson, Phys. Rev. B 89, 245410 (2014)

    Google Scholar 

  45. B. Feng, H. Li, S. Meng, L. Chen, K. Wu, Surf. Sci. 645, 74 (2016)

    Article  ADS  Google Scholar 

  46. M.R. Tchalala, H. Enriquez, A.J. Mayne, A. Kara, G. Dujardin, M. Ait Ali, H. Oughaddou, J. Phys.: Conf. Ser. 491, 012002 (2014)

    Google Scholar 

  47. C. Hogan, S. Colonna, R. Flammini, A. Cricenti, F. Ronci, Phys. Rev. B 92, 115439 (2015)

    Article  ADS  Google Scholar 

  48. P. Gori, O. Pulci, F. Ronci, S. Colonna, F. Bechstedt, J. Appl. Phys. 114, 113710 (2013)

    Article  ADS  Google Scholar 

  49. J.I. Cerdá, J. Sławińska, G. Le Lay, A. Marele, J.M. Gómez-Rodríguez, M.E. Dávila, Nat. Commun. 7, 13073 (2016)

    Article  ADS  Google Scholar 

  50. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, PNAS 112, 2372 (2015)

    Article  ADS  Google Scholar 

  51. G. Prévot, C. Hogan, T. Léoni, R. Bernard, E. Moyen, L. Masson, Phys. Rev. Lett. 117, 276102 (2016)

    Article  Google Scholar 

  52. P. Espeter, C. Keutner, P. Roese, K. Shamout, U. Berges, C. Westphal, Nanotechnology 28, 455701 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Paola De Padova wishes to thank the IMERA (Aix-Marseille University) for the fellowship supporting her work from September 2015 to July 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola De Padova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Padova, P., Olivieri, B., Quaresima, C., Ottaviani, C. (2018). Si Nanoribbons: From 1D to 3D Nanostructures. In: Vogt, P., Le Lay, G. (eds) Silicene. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99964-7_6

Download citation

Publish with us

Policies and ethics