Skip to main content

Sampling-Based SAT/ASP Multi-model Optimization as a Framework for Probabilistic Inference

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11105))

Included in the following conference series:

Abstract

This paper proposes multi-model optimization through SAT witness or answer set sampling, with common probabilistic reasoning tasks as primary use cases (including deduction-style probabilistic inference and hypothesis weight learning). Our approach enhances a state-of-the-art SAT/ASP solving algorithm with Gradient Descent as branching literal decision approach, and optionally a cost backtracking mechanism. Sampling of models using these methods minimizes a task-specific, user-provided multi-model cost function while adhering to given logical background knowledge (either a Boolean formula in CNF or a normal logic program under stable model semantics). Features of the framework include its relative simplicity and high degree of expressiveness, since arbitrary differentiable cost functions and background knowledge can be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://i.stanford.edu/hazy/hazy/tuffy/.

References

  1. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. Theory Pract. Log. Program. 9(1), 57–144 (2009)

    Article  MathSciNet  Google Scholar 

  2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

    Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  4. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-aware sampling and weighted model counting for SAT. In: Proceedings of 28th AAAI Conference on Artificial Intelligence (AAAI), pp. 1722–1730, July 2014

    Google Scholar 

  5. Finger, M., Bona, G.D.: Probabilistic satisfiability: logic-based algorithms and phase transition. In: Proceedings of 22nd International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007) (2007)

    Google Scholar 

  7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming, vol. 161 (1988)

    Google Scholar 

  8. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial spaces using XOR constraints. In: NIPS, pp. 481–488 (2006)

    Google Scholar 

  9. Greßler, A., Oetsch, J., Tompits, H.: \(\sf Harvey\): a system for random testing in ASP. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS, vol. 10377, pp. 229–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_21

    Chapter  Google Scholar 

  10. Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving problems with hard and soft constraints. In: The Satisfiability Problem: Theory and Applications, pp. 573–586. American Mathematical Society (1996)

    Google Scholar 

  11. Lee, J., Wang, Y.: A probabilistic extension of the stable model semantics. In: 2015 AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning (2015)

    Google Scholar 

  12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1), 115–137 (2004). Nonmonotonic Reasoning

    Google Scholar 

  13. Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive databases. Inf. Comput. 110(1), 42–83 (1994)

    Article  MathSciNet  Google Scholar 

  14. Nickles, M.: Distribution-aware sampling of answer sets. In: Ciucci, D., Pasi, G., Vantaggi, B. (eds.) Proceedings of 12th International Conference on Scalable Uncertainty Management (SUM 2018). LNAI, vol. 11142. Springer (2018, to appear)

    Google Scholar 

  15. Nickles, M., Mileo, A.: A hybrid approach to inference in probabilistic non-monotonic logic programming. In: 2nd International Workshop on Probabilistic Logic Programming (PLP 2015) (2015)

    Google Scholar 

  16. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)

    Article  MathSciNet  Google Scholar 

  17. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301 (1985)

    Article  MathSciNet  Google Scholar 

  18. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic dependencies. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006, vol. 1, pp. 458–463. AAAI Press (2006)

    Google Scholar 

  19. Pretolani, D.: Probability logic and optimization SAT: The PSAT and CPA models. Ann. Math. Artif. Intell. 43(1), 211–221 (2005)

    Article  MathSciNet  Google Scholar 

  20. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS, vol. 4911, pp. 1–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_1

    Chapter  MATH  Google Scholar 

  21. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a SAT solver from single-bit supervision. CoRR abs/1802.03685 (2018)

    Google Scholar 

  22. Soos, M.: CryptoMiniSat – a SAT solver for cryptographic problems (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Nickles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nickles, M. (2018). Sampling-Based SAT/ASP Multi-model Optimization as a Framework for Probabilistic Inference. In: Riguzzi, F., Bellodi, E., Zese, R. (eds) Inductive Logic Programming. ILP 2018. Lecture Notes in Computer Science(), vol 11105. Springer, Cham. https://doi.org/10.1007/978-3-319-99960-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99960-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99959-3

  • Online ISBN: 978-3-319-99960-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics