Skip to main content

Methodologies of Symbolic Computation

  • Conference paper
  • First Online:
Artificial Intelligence and Symbolic Computation (AISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11110))

Abstract

The methodologies of computer algebra are about making algebra (in the broad sense) algorithmic, and efficient as well. There are ingenious algorithms, even in the obvious settings, and also mechanisms where problems are translated into other (generally smaller) settings, solved there, and translated back. Much of the efficiency of modern systems comes from these translations. One of the major challenges is sparsity, and the complexity of algorithms in the sparse setting is often unknown, as many problems are NP-hard, or much worse.

In view of this, it is argued that the traditional complexity-theoretic method of measuring progress has its limits, and computer algebra should look to the work of the SAT community, with its large families of benchmarks and serious contests, for lessons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This analysis is mostly taken from [9, 10], but with one change (originally an error, but it makes the point better): \(-21\) instead of \(+21\) for the trailing coefficient of B.

  2. 2.

    The probability of a “random” irreducible polynomial f remaining irreducible modulo p is \(1/\deg (f)\).

References

  1. Abbott, J.A.: Factorisation of polynomials over algebraic number fields. Ph.D. thesis, University of Bath (1988)

    Google Scholar 

  2. Abbott, J.A.: Bounds on factors in \({{\bf Z}}[x]\). J. Symb. Comp. 50, 532–563 (2013)

    Article  MathSciNet  Google Scholar 

  3. Amzallag, E., Pogudin, G., Sun, M., Vo, N.T.: Complexity of triangular representations of algebraic sets. https://arxiv.org/abs/1609.09824v6 (2018)

  4. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comp. 35, 403–419 (2003)

    Article  Google Scholar 

  5. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elimination. Math. Comp. 22, 565–578 (1968)

    MathSciNet  MATH  Google Scholar 

  6. Berlekamp, E.R.: Factoring polynomials over finite fields. Bell. Syst. Tech. J. 46, 1853–1859 (1967)

    Article  MathSciNet  Google Scholar 

  7. Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comp. 24, 713–735 (1970)

    Article  MathSciNet  Google Scholar 

  8. Brain, M.N., Davenport, J.H., Griggio, A.: Benchmarking solvers, SAT-style. In: SC\(^2\) 2017 Satisfiability Checking and Symbolic Computation CEUR Workshop 1974, no. RP3, pp. 1–15 (2017)

    Google Scholar 

  9. Brown, W.S.: On Euclid’s algorithm and the computation of polynomial greatest common divisors. In: Proceedings of SYMSAC 1971, pp. 195–211 (1971)

    Google Scholar 

  10. Brown, W.S.: On Euclid’s algorithm and the computation of polynomial greatest common divisors. J. ACM 18, 478–504 (1971)

    Article  MathSciNet  Google Scholar 

  11. Buchberger, B.: Ein Algorithmus zum Auffinden des Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Math. Inst. University of Innsbruck (1965)

    Google Scholar 

  12. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decomposition based on regular chains. J. Symb. Comp. 75, 74–93 (2016)

    Article  Google Scholar 

  13. Chistov, A.L.: Double-exponential lower bound for the degree of any system of generators of a polynomial prime ideal. St. Petersb. Math. J. 20, 983–1001 (2009)

    Article  Google Scholar 

  14. Collins, G.E.: Subresultants and reduced polynomial remainder sequences. J. ACM 14, 128–142 (1967)

    Article  MathSciNet  Google Scholar 

  15. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_17

    Chapter  Google Scholar 

  16. Coppersmith, D., Davenport, J.H.: Polynomials whose powers are sparse. Acta Arith. 58, 79–87 (1991)

    Article  MathSciNet  Google Scholar 

  17. Cox, D.A.: Why Eisenstein proved the Eisenstein criterion and why Schönemann discovered it first. Am. Math. Monthly 118, 3–31 (2011)

    Article  Google Scholar 

  18. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer, Heidelberg (2015). https://doi.org/10.1007/978-0-387-35651-8

    Book  MATH  Google Scholar 

  19. Davenport, J.H., Carette, J.: The sparsity challenges. In: Watt, S., et al. (eds.) Proceeding of SYNASC 2009, pp. 3–7 (2010)

    Google Scholar 

  20. Dodgson, C.L.: Condensation of determinants, being a new and brief method for computing their algebraic value. Proc. R. Soc. Ser. A 15, 150–155 (1866)

    Article  Google Scholar 

  21. England, M., Davenport, J.H.: The complexity of cylindrical algebraic decomposition with respect to polynomial degree. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 172–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45641-6_12

    Chapter  Google Scholar 

  22. Kalkbrener, M.: A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comp. 15, 143–167 (1993)

    Article  MathSciNet  Google Scholar 

  23. Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars. In: Jeffrey, D.J. (ed.) Proceedings of ISSAC 2008, pp. 155–164 (2008)

    Google Scholar 

  24. Lenstra, A.K., Lenstra Jun, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  Google Scholar 

  25. Liouville, J.: Premier Mémoire sur la Détermination des Intégrales dont la Valeur est Algébrique. J. l’École Polytech. 14(22), 124–148 (1833)

    Google Scholar 

  26. Mayr, E.W., Ritscher, S.: Dimension-dependent bounds for Gröbner bases of polynomial ideals. J. Symb. Comp. 49, 78–94 (2013)

    Article  Google Scholar 

  27. Mignotte, M.: An inequality about factors of polynomials. Math. Comp. 28, 1153–1157 (1974)

    Article  MathSciNet  Google Scholar 

  28. Musser, D.R.: On the efficiency of a polynomial irreducibility test. J. ACM 25, 271–282 (1978)

    Article  MathSciNet  Google Scholar 

  29. Nguyn, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM J. Comput. 39, 874–903 (2009)

    Google Scholar 

  30. Pemantle, R., Peres, Y., Rivin, I.: Four random permutations conjugated by an adversary generate \(S_n\) with high probability. Random Struct. Algorithms 49, 409–428 (2015)

    Article  Google Scholar 

  31. Plaisted, D.A.: Some polynomial and integer divisibility problems are \(NP\)-hard. SIAM J. Comp. 7, 458–464 (1978)

    Article  MathSciNet  Google Scholar 

  32. Roche, D.S.: What can (and can’t) we do with sparse polynomials? In: Proceedings of ISSAC 2018, pp. 25–30 (2018)

    Google Scholar 

  33. Sasaki, T., Sasaki, M.: Analysis of accuracy decreasing in polynomial remainder sequence and floating-point number coefficients. J. Inform. Proc. 12, 394–403 (1989)

    MathSciNet  MATH  Google Scholar 

  34. Sasaki, T., Yamaguchi, S.: An analysis of cancellation error in multivariate Hensel construction with floating-point arithmetic. In: Gloor, O. (ed.) Proceedings of ISSAC 1998, pp. 1–8 (1998)

    Google Scholar 

  35. Schinzel, A.: On the greatest common divisor of two univariate polynomials, I. In: A Panorama of Number Theory or the View from Baker’s Garden, pp. 337–352. C.U.P. (2003)

    Google Scholar 

  36. Shirayanagi, K.: Floating point Gröbner bases. Math. Comput. Simul. 42, 509–528 (1996)

    Article  MathSciNet  Google Scholar 

  37. Swinnerton-Dyer, H.P.F.: Letter to E.H. Berlekamp. Mentioned in [7] (1970)

    Google Scholar 

  38. Tarski, A.: A decision method for elementary algebra and geometry. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 24–84. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-9459-1_3

    Chapter  Google Scholar 

  39. Wang, P.S.: An improved multivariable polynomial factorising algorithm. Math. Comp. 32, 1215–1231 (1978)

    Article  MathSciNet  Google Scholar 

  40. Wang, P.S., Guy, M.J.T., Davenport, J.H.: \(p\)-adic reconstruction of rational numbers. SIGSAM Bull. 16(2), 2–3 (1982)

    Article  Google Scholar 

  41. Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Syst. Sci. and Math. Sci. (Beijing) 4, 207–235 (1984)

    MathSciNet  Google Scholar 

  42. Zassenhaus, H.: On Hensel factorization I. J. Number Theor. 1, 291–311 (1969)

    Article  MathSciNet  Google Scholar 

  43. Zippel, R.E.: Effective Polynomial Computation. Kluwer Academic Publishers, Boston (1993)

    Book  Google Scholar 

Download references

Acknowledgements

I am grateful to Russell Bradford, Akshar Nair, Zak Tonks and the AISC 2018 organisers for useful comments and corrections. As always, I am grateful to David Carlisle for advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Davenport .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davenport, J. (2018). Methodologies of Symbolic Computation. In: Fleuriot, J., Wang, D., Calmet, J. (eds) Artificial Intelligence and Symbolic Computation. AISC 2018. Lecture Notes in Computer Science(), vol 11110. Springer, Cham. https://doi.org/10.1007/978-3-319-99957-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99957-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99956-2

  • Online ISBN: 978-3-319-99957-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics