Skip to main content

Central Intravascular Catheter (CVC)

  • Chapter
  • First Online:
Prevention and Control of Infections in Hospitals

Abstract

Bloodstream infections (BI), bacteraemia/sepsis, are serious and increasing in European hospitals. Bacteraemia originating from catheters in large vessels is estimated to be 2–8% of cases. Most catheter infections are associated with central venous catheters or central arterial catheters. Risk arises in intensive care units (ICU), medical units, during cancer therapy, and in haemodialysis centres. An increasing percentage is recorded outside the ICU or outside the hospital. Sepsis has a high mortality rate (12–35%) and increases the stay in ICU for 4–14 days, and the cost may be 4000–13,000 Euro per patient. Educating and training personnel in aseptic care and treatment of CVC or other intravascular catheters may reduce infection rates, especially concerning catheter-related Staphylococcus aureus infections. The procedures need time and quietness so that sterility is properly addressed. Infection risk is reduced by removing catheters as soon as possible and avoiding use of the femoral vein in adults. Catheter contamination is caused by the patient’s skin flora or contamination of the infusion set, catheter openings and other sterile equipment. This may occur in the absence of aseptic technique and the presence of large environmental loads of microbes. Most hospital-associated, bloodstream infections can be prevented. The following chapter is focused on practical measures to control and prevent central catheter-associated bloodstream infections in hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beekman SE, Henderson DK. Infections caused by percutaneous intravascular devices. In: Mandell, Douglas, Bennets, editors. Principles and practice of infectious diseases. 7th ed. London: Elsevier Churchill Livingstone; 2010. p. 3697–715. and 2015. p. 3310–24.

    Google Scholar 

  2. O’Grady NP, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol. 2002;23:759.

    Article  Google Scholar 

  3. O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections, 2011. CDC. 2011. Updated 2017.

    Google Scholar 

  4. Marschall J, Mermel LA, Fakih M, et al. Strategies two preventer central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35:753–71.

    Article  Google Scholar 

  5. Maki DG, Stolz SM, Wheeler S, Mermel LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. Ann Intern Med. 1997;127:257–66.

    Article  CAS  Google Scholar 

  6. Maki DG, Kluger DM, Crnich CJ. The risk of blood stream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc. 2006;81:1159–71.

    Article  Google Scholar 

  7. Ekkelkamp MB, van der Bruggen T, van der Vijver D, Wolfs T, Bonten M. Bacteraemic complications of intravascular catheters colonized with Staphylococcus aureus. Clin Infect Dis. 2008;46:114–8.

    Article  Google Scholar 

  8. Møller T, Borregaard N, Tvede M, Adamsen L. Patient education a strategy for prevention of infection caused by permanent central venous catheters in patients with haematological malignancies: a randomized clinical trial. J Hosp Infect. 2005;61:330–41.

    Article  Google Scholar 

  9. Maas A, Flament P, Pardou A, et al. Central venous catheter-related bacteraemia in critical ill neonates: risk factors and impact of a prevention program. J Hosp Infect. 1998;40:211–24.

    Article  CAS  Google Scholar 

  10. Zuschneid I, Schwab F, Geffers C, et al. Reducing central venous catheter-associated primary bloodstream infections in intensive care units is possible: data from the German nosocomial infection surveillance system. Infect Control Hosp Epidemiol. 2003;24:501.

    Article  Google Scholar 

  11. L'Heriteau F, Olivier M, Maugat S, et al. Impact of a five-year surveillance of central venous catheter infections in the REACAT intensive care unit network in France. J Hosp Infect. 2007;66:123–9.

    Article  CAS  Google Scholar 

  12. Pronovost PJ, Goeschel CA, Colantuoni E, et al. Sustaining reductions in catheter related bloodstream infections in Michigan intensive care units. Observational study. BMJ. 2010;340:C309.

    Article  Google Scholar 

  13. Marsteller JA, Sexton JB, Hsu YJ, et al. A multicenter, phased, cluster-randomized controlled trial to reduce central-line-associated bloodstream infections in intensive care units. Crit Care Med. 2012;40:2933–9.

    Article  Google Scholar 

  14. Wise ME, Scott D, Baggs JM, et al. National estimates of central-line-associated bloodstream infections in critical care patients. Infect Control Hosp Epidemiol. 2013;34:547–54.

    Article  Google Scholar 

  15. Berenholtz SM, Lubomski LH, Weeks K, et al. Eliminating central line-associated bloodstream infections: a national patient safety imperative. Infect Control Hosp Epidemiol. 2014;35:56–62.

    Article  Google Scholar 

  16. Traore O, Liotier J, Souweine B. Prospective study of arterial and central venous catheter colonization and arterial- and central venous catheter-related bacteremia in intensive care units. Crit Care Med. 2005;33:1276–80.

    Article  Google Scholar 

  17. Hammarskjøld F, Berg S, Hanberger H, Malmvall B-E. Low incidence of arterial catheter infections in a Swedish intensive care unit: risk factors for colonization and infection. J Hosp Infect. 2010;76:130–4.

    Article  Google Scholar 

  18. Gowardman JR, Lipman J, Rickard CM. Assessment of peripheral arterial catheters as a source of sepsis in the critically ill: a narrative review. J Hosp Infect. 2010;75:12–8.

    Article  CAS  Google Scholar 

  19. Safdar N, O’Horo JC, Maki DG. Arterial catheter-related bloodstream infection: incidence, pathogenesis, risk factors and prevention. J Hosp Infect. 2013;85:189–95.

    Article  CAS  Google Scholar 

  20. Maki DG. In vitro studies of a novel antimicrobial luer- activated needleless connector for prevention of catheter-related bloodstream infection. Clin Infect Dis. 2010;50:1580–7.

    Article  Google Scholar 

  21. Mnatzaganian G, Galai N, Sprung CL, et al. Increased risk of blood stream and urinary infections in intensive care units (ICU) patients compared with patients fitting ICU admission criteria treated in regular wards. J Hosp Infect. 2005;59:331–42.

    Article  CAS  Google Scholar 

  22. Melville CAS, Bisset WM, Long S, Milla PJ. Counting the cost: hospital versus home central venous catheter survival. J Hosp Infect. 1997;35:197–205.

    Article  CAS  Google Scholar 

  23. Orsi GV, Stefano LD, Noah N. Hospital-acquired, laboratory-confirmed bloodstream infection: increased hospital stay and direct cost. Infect Control Hosp Epidemiol. 2002;23:190–7.

    Article  Google Scholar 

  24. Klevens RM, Edwards JR, Richards CL, et al. Estimating health care-associated infection and deaths in US Hospitals, 2002. Public Health Rep. 2007;122:160–6.

    Article  Google Scholar 

  25. Joint Commission International. Preventing central-line -associated bloodstream infections. The Joint Commission. 2012. USA.

    Google Scholar 

  26. Brunvand L, Fugelseth D. Bacterial endocarditis in premature infants. A complication of a central venous catheter. Tidsskr Nor Legeforen. 1996;116:1328–30.

    CAS  Google Scholar 

  27. Tacconelli E, Smith G, Hieke K, Lafuma A, Bastide P. Epidemiology, medical outcomes and costs of catheter-related bloodstream infections in intensive care units of four European countries: literature- and registry-based estimates. J Hosp Infect. 2009;72:97–103.

    Article  CAS  Google Scholar 

  28. Karthaus M, Doellmann T, Klimasch T, Krauter J, Heil G, Ganser A. Central venous catheter infections in patients with acute leukemia. Chemotherapy. 2002;48:154–7.

    Article  CAS  Google Scholar 

  29. Blanchard AC, Fortin E, Rocher I, et al. Central line-associated bloodstream infection in neonatal intensive care units. Infect Control Hosp Epidemiol. 2013;34:1167–73.

    Article  Google Scholar 

  30. Andersen BM, Moen H. Prevention of intravascular infections. Peripheral and central intravascular catheters. In: Handbook of hygiene and infection control for hospitals. Oslo: Ullevaal University Hospital; 1996. p. 125–31. and 2003. p. 195–203.

    Google Scholar 

  31. Andersen BM, Olafsen K. Prevention of intravascular infections. Peripheral and central intravascular catheters. In: Handbook of hygiene and infection control for hospitals. Oslo: Ullevaal University Hospital; 2008. p. 350–69.

    Google Scholar 

  32. Shapey IM, Foster MA, Whitehouse T, Jumaa P, Bion JF. Central venous catheter-related bloodstream infections: improving post-insertion catheter care. J Hosp Infect. 2009;71:117–22.

    Article  CAS  Google Scholar 

  33. Lorente L, Henry C, Martin MM, Jimenez A, Mora ML. Central venous catheter-related infection in a prospective and observational study of 2,595 catheters. Crit Care. 2005;9:631–5.

    Article  Google Scholar 

  34. Palmer S, Solano T. Contamination of guidewires during insertion of central venous catheters in an intensive care setting. Infect Control Hosp Epidemiol. 2005;26:206–7.

    Article  Google Scholar 

  35. Cunningham JM. Aseptic technique for performing central venous catheter exchange using a guide wire. Surg Rounds Technique. Jan 2008.

    Google Scholar 

  36. Maragakis LL, Bradley KL, Song X, et al. Increased catheter-related bloodstream infection rates after the introduction of a new mechanical valve intravenous access port. Infect Control Hosp Epidemiol. 2006;27:67–70.

    Article  Google Scholar 

  37. Casey AL, Burnell S, Whinn H, et al. A prospective clinical trial two evaluated the microbial barrier of a needleless connector. J Hosp Infect. 2007;65:2112–218.

    Article  Google Scholar 

  38. Amin AK, O’Connor I, Lavin K, Wareham DW. Prevention of an outbreak of nosocomial blood stream infection-associated with a new vascular access device by retraining of staff. J Hosp Infect. 2009:85–6.

    Article  CAS  Google Scholar 

  39. Jacob JT, Chernetsky Tejedor S, Reyes MD, et al. Comparison of a silver-coated needleless connector and a standard needleless connector for the prevention of central line-associated bloodstream infections. Infect Control Hosp Epidemiol. 2015;36:294–301.

    Article  Google Scholar 

  40. Hanna H, Afif C, Alakech B, Boktour M, Tarrand J, Hachem R, Raad I. Central venous catheter-related bacteremia due to gram-negative bacilli: significance of catheter removal in preventing relapse. Infect Control Hosp Epidemiol. 2004;25:646–9.

    Article  Google Scholar 

  41. Raad I, Hanna HA, Awad A, Alrahwan A, Bivins C, Khan A, et al. Optimal frequency of changing intravenous administration sets: is it safe two prolong use beyond 72 hours? Infect Control Hosp Epidemiol. 2001;22:136–9.

    Article  CAS  Google Scholar 

  42. Raad II, Hanna HA, Boktour M, et al. Catheter-related vancomycin-resistant Enterococcus faecium bacteremia: clinical and molecular epidemiology. Infect Control Hosp Epidemiol. 2005;26:658–61.

    Article  Google Scholar 

  43. Percival SL, Kite P, Eastwood K, Urga R, Carr J, Arduino MJ, et al. Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm. Infect Control Hosp Epidemiol. 2005;26:515–9.

    Article  Google Scholar 

  44. Harnett SJ, Allen KD, Macmillan RR. Critical care unit outbreak of Serratia liquefaciens from contaminated pressure monitoring equipment. J Hosp Infect. 2001;47:301–7.

    Article  CAS  Google Scholar 

  45. Adderson EE, Boudreaux JW, Hayden R. Infections caused by coryneform bacteria in pediatric oncology patients. Pediatr Infect Dis J. 2008;27:136–41.

    PubMed  Google Scholar 

  46. Fagan RP, Edwards JR, Park BJ, et al. Incidence trends in pathogen-specific central line-associated bloodstream infections in US Intensive Care Units, 1990–2010. Infect Control Hosp Epidemiol. 2013;34:893–9.

    Article  Google Scholar 

  47. Liu CY, Huang LJ, Wang WS, et al. Candidemia in cancer patients: impact of early removal of non-tunnelled central venous catheters on outcome. J Infect. 2009;58:154–60.

    Article  CAS  Google Scholar 

  48. Nishikawa K, Takasu A, Morita K, Tsumori H, Sakamoto T. Deposits on the intraluminal surface and bacterial growth in central venous catheters. J Hosp Infect. 2010;75:19–22.

    Article  CAS  Google Scholar 

  49. Maki DG, Ringer M, Alvardo CJ. Prospective randomized trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection-associated with central venous and arterial catheters. Lancet. 1991;338:339–43.

    Article  CAS  Google Scholar 

  50. Timsit JF, Schwebel C, Bouadma L, et al. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults. JAMA. 2009;301:1231–41.

    Article  CAS  Google Scholar 

  51. Chambers ST, Sanders J, Patton WN, et al. Reduction of exit-site infections of tunnelled intravascular catheters among neutropenic patients by sustained-release chlorhexidine dressings: results from a prospective randomized controlled trial. J Hosp Infect. 2005;61:53–61.

    Article  CAS  Google Scholar 

  52. Curchoe RM, Powers J, El-Daher N. Weekly transparent dressing changes linked two increased bacteremia rates. Infect Control Hosp Epidemiol. 2002;23:730–2.

    Article  Google Scholar 

  53. Timsit JF, Bouadma L, Ruckly S, et al. Dressing disruption is a major risk factor for catheter-related infection. Crit Care Med. 2012;40:1707–14.

    Article  Google Scholar 

  54. Snartese M, Ruger W, Scholte op Reimer WJM, Lucas C. Antibiotic-based catheter lock solutions for prevention of catheter-related bloodstream infection: a systematic review of randomized controlled trials. J Hosp Infect. 2010;75:1–11.

    Article  Google Scholar 

  55. Wright M-O, Tropp J, Schora DM, et al. Continuous passive disinfection of catheter hubs prevent contamination and bloodstream infection. Am J Infect Control. 2013;41:33–8.

    Article  Google Scholar 

  56. Walder B, Pittet D, Tramer MR. Prevention of bloodstream infections with central venous catheters treated with anti-infective agents depends on catheter type and insertion time: from a meta-analysis. Infect Control Hosp Epidemiol. 2002;23:748–56.

    Article  Google Scholar 

  57. van Rooden CJ, Schippers EC, Guiot HFL, et al. Prevention of coagulase-negative staphylococcal central venous catheter-related infection using urokinase rinses: a randomized double-blind controlled trial in patients with hematologic malignancies. J Clin Oncol. 2008;26:428–33.

    Article  Google Scholar 

  58. Carmago LFA, Marra AR, Büchel GL, et al. Double-lumen central venous catheters impregnated with chlorhexidine and silver sulfadiazine to prevent catheter colonization in the intensive care unit setting: a prospective randomized study. J Hosp Infect. 2009;72:227–33.

    Article  Google Scholar 

  59. Antonelli M, DePascale G, Ranier VM, et al. Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive) vs conventional catheters in intensive care units patients. J Hosp Infect. 2012;82:101–7.

    Article  CAS  Google Scholar 

  60. Gnass SA, Barboza L, Bilcich D, Angeloro P, Treiyer W, Grenovero S, et al. Prevention of central venous catheter-related bloodstream infections using non-technologic strategies. Infect Control Hosp Epidemiol. 2004;25:675–7.

    Article  Google Scholar 

  61. Collignon P, et al. Sepsis associated with central vein catheters in critically ill patients. Intensive Care Med. 1988;14:227–31.

    Article  CAS  Google Scholar 

  62. Lehr L, et al. Incidence of infection with 3,151 central venous catheters in surgical patients. Dtsch Med Wochenschr. 1988;113:1218–23.

    Article  CAS  Google Scholar 

  63. Ajenjo MC, Morley JC, Russo AJ, et al. Peripherally inserted central venous catheter-associated bloodstream infections in hospitalized adult patients. Infect Control Hosp Epidemiol. 2011;32:125–30.

    Article  Google Scholar 

  64. Baxi SM, Schuman EK, Scipione CA, et al. Impact of post placement adjustment of peripherally inserted central catheters on the risk of bloodstream infection and venous thrombus formation. Infect Control Hosp Epidemiol. 2013;34:758–92.

    Article  Google Scholar 

  65. Chopra V, O’Horo JC, Rogers MAM, Maki DG, Safdar N. The risk of bloodstream infection-associated with peripherally inserted central catheters compared with central venous catheters in adults: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2013;34:908–18.

    Article  Google Scholar 

  66. Eggimann P, Pittet D. Overview of catheter-related infections with special emphasis on prevention based on educational programs. Clin Microbiol Infect. 2002;8:295–309.

    Article  CAS  Google Scholar 

  67. Klieger SB, Potter-Bynoe G, Quach C, Sandor TJ, Coffin SE. Beyond the bundle: a survey of central line-associated bloodstream infection prevention practices used in US and Canadian pediatric hospitals. Infect Control Hosp Epidemiol. 2013;34:1208–10.

    Article  Google Scholar 

  68. Cherifi S, Mascart G, Dedliste A, et al. Variations in catheter-related bloodstream infections rates based on local practices. Antimicrob Resist Infect Control. 2013;2:10.

    Article  Google Scholar 

  69. Rubinson L, Wu AW, Haponik EC, Diette GB. Why is it that internists do not follow guidelines for preventing intravascular catheter infections? Infect Control Hosp Epidemiol. 2005;26:525–33.

    Article  Google Scholar 

  70. Pearson ML. Guideline for prevention of intravascular-device-related infections. CDC Infect Control Hosp Epidemiol. 1996;17:438–73.

    Article  CAS  Google Scholar 

  71. Mahida N, Levi K, Kearns A, Snape S, Moppett I. Investigation the impact of clinical anaesthetic practice on bacterial contamination of intravenous fluids and drugs. J Hosp Infect. 2015;90:70–4.

    Article  CAS  Google Scholar 

  72. Tang HJ, Chao CM, Leung PO, Lai CC. Achieving “Zero” CLABSI and VAP after sequential implementation of central line bundle and ventilator bundle. Infect Control Hosp Epidemiol. 2015;36:364–6.

    Google Scholar 

  73. Schuppener LM, Pop-Vicas AE, Brooks EG, Duster MN, Crnich CJ, Sterkel AK, et al. Serratia marcescens bacteremia: nosocomial cluster following narcotic diversion. Infect Control Hosp Epidemiol. 2017;38:1027–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andersen, B.M. (2019). Central Intravascular Catheter (CVC). In: Prevention and Control of Infections in Hospitals. Springer, Cham. https://doi.org/10.1007/978-3-319-99921-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99921-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99920-3

  • Online ISBN: 978-3-319-99921-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics