Skip to main content

Antibacterial Agents and Drug Resistance

  • Chapter
  • First Online:
Prevention and Control of Infections in Hospitals
  • 4791 Accesses

Abstract

To “win the war” against a continuous development of new and old (“emerging and re-emerging”) drug-resistant and pathogenic bacteria is a problem. Super drug-resistant bacteria are now isolated from patients and the environment in most countries in the world. Overuse and abuse of antibacterial agents in treatment and growth promotional activity have led to more resistant bacteria being transferred to animal and fish production, and vice versa, and may be included in the food chain. In addition, increased mobility, climatic changes, overcrowding, war and disasters, poor hygiene and poor infection control are accelerating this chain reaction. Modern infection prevention efforts must be directed towards detection, reduction and removal of unfortunate use of antibacterial agents. Central to this work is proper hygiene and good infection control both for humans and animals. This chapter is focused on practical measures to control overuse and abuse of antibacterial agents and to prevent drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. The evolving threat of antibacterial resistance. Options for action. Geneva: World Health Organization; 2012.

    Google Scholar 

  2. Peirano G, Bradford PA, Kazmierczak KM, et al. Global incidence of carbapenemase-producing Escherichia coli ST131. Emerg Infect Dis. 2014;20:1928–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. CDC. Antibiotic resistance threats in the United States. Atlanta: CDC; 2013.

    Google Scholar 

  4. National strategy for combating antibiotic resistant bacteria. The White House, Washington; September 2014.

    Google Scholar 

  5. O’Fallon E, Kandell R, Schreiber R, D’Agata EM. Acquisition of multidrug resistant gram negative bacteria; incidence and risk factors within a long term care population. Infect Control Hosp Epidemiol. 2010;31:1148–53.

    Article  PubMed  Google Scholar 

  6. Bucket CL, Besser RE. Combating antimicrobial resistance: intervention programs to promote appropriate antibiotic use. Inf Med. 2002;19:160–73.

    Google Scholar 

  7. Interagency task force on antimicrobial resistance: a public health action plan to combat antimicrobial resistance. Available at http://www.cdc.gov/drugresistance/actionplan/html/index.htm. Accessed June 22, 2004.

  8. ECDC. European antibiotic awareness day, a European health initiative. Summary of latest data on antibiotic resistance in the European Union. EARS-Net results; 2013.

    Google Scholar 

  9. Friedman CR, Whitney CG. It’s time for a change in practice: reduction of antibiotic use can alter antibiotic resistance. J Infect Dis. 2008;197:1082–3.

    Article  PubMed  Google Scholar 

  10. Bronzwaer SLAM, Cars O, Buchholz U, et al. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerg Infect Dis. 2002;8:278–82.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boucher HW, Talbot GH, Bradley JS et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Disease Society of America. Clin Infect Dis 2009; 48: 1–12.

    Article  PubMed  Google Scholar 

  12. Antibiotic use in the United States. Progress and opportunities. Atlanta, GA. CDC 2017.

    Google Scholar 

  13. The Board of Global Health and Institute of Medicine. Ending the war metaphor: the changing agenda for unraveling the host-microbe relationship - workshop summary. Washington, DC: The National Academies Press; 2006.

    Google Scholar 

  14. Breedlove B, Cohen ML. After the resistance: the Alamo today. Emerg Infect Dis. 2014;20:1268–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fleming SA. Nobel lecture: penicillin. 1945. Stockholm: Nobel Media AB; 2013.

    Google Scholar 

  16. Andersen BM. Microbiology and infection protection. Handbook of hygiene and infection control in hospitals. Fagbokforlaget; 2014.

    Google Scholar 

  17. Andersen BM. Food infection is a neglected problem. Aftenposten Knowledge; Oct 28, 2014.

    Google Scholar 

  18. Paterson GK, Larsen J, Harrison EM, et al. First detection of livestock-associated methicillin-resistant Staphylococcus aureus CC398 in bulk tank milk in the United Kingdom, January to July 2012. Euro Surveill. 2012;17:20337.

    PubMed  Google Scholar 

  19. Casey JA, Curriero FC, Cosgrove SE, Nachman KE, Schwartz BS. High-density livestock operations. Crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Intern Med. 2013;173(21):1980–90.

    Article  PubMed  PubMed Central  Google Scholar 

  20. ECDC Surveillance reports. Summary of the latest data on antibiotic resistance in Europe; 2017.

    Google Scholar 

  21. WHO. Antimicrobial resistance 2014. Geneva: World Health Organization; 2014.

    Google Scholar 

  22. Lee HW, Koh YM, Kim J, et al. Capacity of multidrug resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect. 2008;14:49–54.

    Article  CAS  PubMed  Google Scholar 

  23. Litleskare I, Blix S. Total usage in humans, animals and fish, measured in weight of active substance. NORM/NORM-VET 2015;(1):27.

    Google Scholar 

  24. Grave K. Usage of antimicrobial agents in animals. NORM/NORM-VET 2015;(1):24.

    Google Scholar 

  25. ECDC: point prevalence survey of healthcare-associated infections and antimicrobial use in European hospitals 2011-2012. ECDC, Surveillance Report; 2 July 2013.

    Google Scholar 

  26. Eveillard M, Schmit JL, Eb F. Antimicrobial use prior to the acquisition of multiresistant bacteria. Infect Control Hosp Epidemiol. 2002;23:155–8.

    Article  PubMed  Google Scholar 

  27. Grub C, Holberg-Petersen M, Medbø S, Andersen BM, Syversen G, Melby KK. A multi-drug resistant, methicillin-susceptible strain of Staphylococcus aureus from a neonatal intensive care unit in Oslo, Norway. Scand J Infect Dis. 2010;42:148–51.

    Article  PubMed  Google Scholar 

  28. Gutierrez D, Delgado S, Vasquez-Sanches D, et al. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl Environ Microbiol. 2012;78:8547–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. NORM/NORM-VET. Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway. Tromsø/Oslo 2013, 2014 and 2015.

    Google Scholar 

  30. ECDC Surveillance reports. Summary of the latest data on antibiotic consumption in the European Union; 2017.

    Google Scholar 

  31. Sievert DM, Ricks P, Edwards JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the centers of disease control and prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;34:1–14.

    Article  PubMed  Google Scholar 

  32. Livermore DM. Defining an extended-spectrum beta-lactamase. Clin Microbiol Infect. 2008;14:3–10.

    Article  CAS  PubMed  Google Scholar 

  33. Harris AD, McGregor JC, Johnson JA, et al. Risk factors for colonization with extended-spectrum beta-lactamase-producing bacteria and intensive care unit admission. Emerg Infect Dis. 2007;13:1144–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Olafsen K, Hotvedt R, Andersen BM, Almdahl SM, Sorlie D. Nosocomial infection with resistant Enterobacter cloacae. Tidsskr Nor Legeforen. 1989;109:332–6.

    CAS  Google Scholar 

  35. Koeleman JGM, van der Bijl MW, Stove J, Vanderbroucke-Grauls CMJE, Savelkoul PHM. Antibiotic resistance is a major risk factor for epidemic behavior of Acinetobacter baumannii. Infect Control Hosp Epidemiol. 2001;22:284–8.

    Article  CAS  PubMed  Google Scholar 

  36. Pimentel JD, Low J, Styles K, Harris OC, Hughes A, Athan E. Control of an outbreak of multi-drug resistant Acinetobacter baumannii in an intensive care unit and a surgical ward. J Hosp Infect. 2005;59:249–53.

    Article  CAS  PubMed  Google Scholar 

  37. Wybo I, Blommert L, De Beer T, et al. Outbreak of multidrug-resistant Acinetobacter baumannii in a Belgian university hospital after transfer from Greece. J Hosp Infect. 2007;67:374–80.

    Article  CAS  PubMed  Google Scholar 

  38. Bukholm G, Tannæs T, Kjelsberg ABB, Smith-Erichsen N. An outbreak of multidrug-resistant Pseudomonas aeruginosa associated with increased risk of patient death in an intensive care unit. Infect Control Hosp Epidemiol. 2002;23:441–6.

    Article  PubMed  Google Scholar 

  39. Wang CY, Jerng JS, Cheng KY, et al. Pandrug-resistant Pseudomonas aeruginosa among hospitalized patients; clinical features, risk factors and outcomes. Clin Microbiol Infect. 2006;12:63–8.

    Article  CAS  PubMed  Google Scholar 

  40. Qureshi A, Mooney L, Denton M, Kerr KG. Stenotrophomonas maltophilia in salads. Emerg Infect Dis. 2005;11:1157–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grundmann H, Livermore DM, Giske CG, et al. The CNSE Working Group. Carbapenem-non-susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro Surveill. 2010;15:19711. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19711

  42. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rasheed JK, Kitchel B, Zhu W, et al. New Delhi metallo-beta-lactamase-producing Enterobacteriaceae, United States. Emerg Infect Dis. 2013;19:870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zachary KC, Bayne PS, Morrison VJ, Ford DS, Silver LC, Hooper DC. Contamination of gowns, gloves, and stethoscopes with vancomycin-resistant enterococci. Infect Control Hosp Epidemiol. 2001;22:560–4.

    Article  CAS  PubMed  Google Scholar 

  45. Byers KE, Anglim AM, Anneski CJ, Farr BM. Duration of colonization with vancomycin-resistant enterococcus. Infect Control Hosp Epidemiol. 2002;23:207–11.

    Article  PubMed  Google Scholar 

  46. Andersen BM, Seljordslia B, Hochlin K, Rasch M, Syversen G. A predicted outbreak in an overcrowded, administratively neglected and run-down haemodialysis unit as a victim of “new public management” in Norwegian hospitals. J Hosp Admin. 2013;2:1–10.

    Google Scholar 

  47. Sjølund M, Tano E, Blaser MJ, Andersson DI, Engstrand L. Persistence of resistant Staphylococcus epidermidis after single course of clarithromycin. Emerg Infect Dis. 2005;11:1389–93.

    Article  PubMed  PubMed Central  Google Scholar 

  48. WHO. Tuberculosis (TB) WHO monitoring of Xpert MTB/RIF roll-out, 2013. 2017.

    Google Scholar 

  49. Andersen BM. Use of antibacterial agents. In: Handbook in hygiene and infection control in hospitals. Oslo: Ullevål University Hospital; 2008. p. 156–9.

    Google Scholar 

  50. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24:718–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andersen BM, Holta Ringertz S, Gullord Petersen T, et al. A three-year survey of nosocomial and community-acquired infections, antibiotic treatment and re-hospitalization in a Norwegian health region. J Hosp Infect. 2000;44:214–23.

    Article  CAS  PubMed  Google Scholar 

  52. Andersen BM, Rasch M, Hochlin K, Tollefsen T, Sandvik L. Hospital-acquired infections before and after healthcare reorganization in a tertiary university hospital in Norway. J Publ Health. 2009;7:1–7.

    Google Scholar 

  53. Vennerød AM, editor. Norwegian Medicines Guide for Health Professionals. Oslo: Association for release by Norwegian Medicines Handbook Oslo; 2015.

    Google Scholar 

  54. Jensenius M, von der Lippe B, Melby KK, Steinbakk M. Brief guide in antibiotic selection. Oslo: Ullevål University Hospital, revised edition; 2000.

    Google Scholar 

  55. Brubakk O, Brørs O, Andersen BM. Treatment suggestions for infections. In: Handbook in hygiene and infection control for hospitals. Oslo: Ullevål University Hospital; 2003. p. 62–4.

    Google Scholar 

  56. Guidelines for antibiotic use in primary care. Antibiotic center for primary care (ASP); 12 Jan 2009.

    Google Scholar 

  57. Andersen BM. Antibacterial agents. In: In: handbook of hygiene and infection control for nursing homes and other long-term care institutions. Oslo: Akademika Forlag; 2013. p. 455–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andersen, B.M. (2019). Antibacterial Agents and Drug Resistance. In: Prevention and Control of Infections in Hospitals. Springer, Cham. https://doi.org/10.1007/978-3-319-99921-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99921-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99920-3

  • Online ISBN: 978-3-319-99921-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics