Skip to main content

Geometric Properties of Normalized Wright Functions

  • Chapter
  • First Online:
Applied Mathematical Analysis: Theory, Methods, and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 177))

  • 712 Accesses

Abstract

In this chapter, we investigate some subclasses of analytic functions in the open unit disk in the complex plane. We derive characteristic properties of the normalized Wright functions belonging to these classes and we find upper bound estimate for these functions belonging to the subclasses studied. Several sufficient conditions were obtained for the parameters of the normalized form of the Wright functions to be in this class. Some geometric properties of the integral transforms represented with the normalized Wright functions are also studied. We give some sufficient conditions for the integral operators involving normalized Wright functions to be univalent in the open unit disk. The key tools in our proofs are the Becker’s and the generalized version of the well-known Ahlfor’s and Becker’s univalence criteria. In the final section, we introduce a Poisson distribution series, whose construction is alike Wright functions, and obtain necessary and sufficient conditions for this series belonging to the class \(S^{*} C(\alpha ,\beta ;\gamma )\), and necessary and sufficient conditions for those belonging to the class \(TS^{*} C(\alpha ,\beta ;\gamma )\). We also introduce two integral operators related to this series and investigate various geometric properties of these integral operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altintaş, O.: On a subclass of certain starlike functions with negative coefficiets. Math. Jpn. 36, 489–495 (1991)

    MATH  Google Scholar 

  2. Altintaş, O., Irmak, H., Srivastava, H.M.: Fractional calculus and certain starlike functions with negative coefficients. Comput. Math. Appl. 30(2), 9–15 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altintaş, O., Irmak, H., Owa, S., Srivastava, H.M.: Coefficient bounds for some families of starlike and convex functions of complex order. Appl. Math. Lett. 20(12), 1218–1222 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Altintaş, O., Owa, S.: On subclasses of univalent functions with negative coefficients. Pusan Kyongnam Math. J. 4, 41–46 (1988)

    MATH  Google Scholar 

  5. Altintaş, O., Özkan, Ö., Srivastava, H.M.: Neighborhoods of a certain family of multivalent functions with negative coefficients. Comput. Math. Appl. 47(10–11), 1667–1672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baricz, A., Frasin, B.A.: Univalence of integral operators involving Bessel functions. Appl. Math. Lett. 23(4), 371–376 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baricz, A., Ponnusamy, S.: Starlikeness and convexity of generalized Bessel functions. Integr. Transform. Spec. Funct. 21(9), 641–653 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Becker, J.: Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen. J. reine angew. Math. 255, 23–43 (1972)

    MathSciNet  MATH  Google Scholar 

  9. Blezu, D.: On univalence criteria. Gen. Math. 14(1), 77–84 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Breaz, D., Breaz, N., Srivastava, H.M.: An extension of the univalent condition for a family of integral operators. Appl. Math. Lett. 22(1), 41–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Breaz, D., Günay, H.Ö.: On the univalence criterion of a general integral operator. J. Inequalities Appl. 2008(1), 702715 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227(1), 81–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duren, P.L.: Univalent Functions (Grundlehren der mathematischen Wissenschaften), vol. 259. Springer, New York (1983)

    Google Scholar 

  14. Gao, C.Y., Yuan, S.M., Srivastava, H.M.: Some functional inequalities and inclusion relationships associated with certain families of integral operators. Comput. Math. Appl. 49(11–12), 1787–1795 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goodman, A.W.: Univalent Functions. Mariner Company (1983)

    Google Scholar 

  16. Gorenflo, R., Luchko, Y., Mainardi, F.: Analytic properties and applications of Wright functions. Fract. Calc. Appl. Anal. 2(4), 383–414 (1999)

    Google Scholar 

  17. Irmak, H., Lee, S.H., Cho, N.E.: Some multivalently starlike functions with negative coefficients and their subclasses defined by using a differential operator. Kyungpook Math. J. 37(1), 43 (1997)

    Google Scholar 

  18. Kadioğlu, E.: On subclass of univalent functions with negative coefficients. Appl. Math. Comput. 146(2–3), 351–358 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Luchko, Y., Gorenflo, R.: Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal. 3(1), 63–78 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Maharana, S., Prajapat, J.K., Bansal, D.: Geometric properties of Wright function. Math. Bohemica 143(1), 99–111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mainardi, F.: Fractional calculus some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics. Springer, Berlin (1971)

    Google Scholar 

  22. Miller, S.S., Mocanu, P.T.: Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 1, 333–342 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mostafa, A.O.: A study on starlike and convex properties for hypergeometric functions. J. Inequalities Pure Appl. Math. 10(3), 1–6 (2009)

    MathSciNet  Google Scholar 

  24. Murugusundaramoorthy, G., Vijaya, K., Porwal, S.: Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacet. J. Math. Stat. 45(4), 1101–1107 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Mustafa, N.: Close-to-convexity of normalized Wright function. J. Sci. Eng. 18(54), 290–303 (2016)

    Article  Google Scholar 

  26. Mustafa, N.: Some geometric properties of the Wright functions. In: AIP Conference Proceedings 2016, vol. 1726, No. 1, p. 020080. AIP Publishing, New York (2016)

    Google Scholar 

  27. Mustafa, N.: Geometric properties of normalized Wright functions. Math. Comput. Appl. 21(2), 14 (2016)

    MathSciNet  Google Scholar 

  28. Mustafa, N.: Integral operators of the normalized Wright functions and their some geometric properties. Gazi Univ. J. Sci. 30(1), 333–343 (2017)

    Google Scholar 

  29. Mustafa, N.: Univalence of certain integral operators involving normalized Wright functions. Commun. Fac. Sci. Univ. Ank.-Ser. A1 Math. Stat. 66(1), 19–28 (2017)

    Google Scholar 

  30. Mustafa, N., Altintaş, O.: Normalized Wright functions with negative coefficients and their some integral transforms. TWMS J. Pure Appl. Math. 9(2), 190–206 (2018)

    Google Scholar 

  31. Mustafa, N., Nezir, V.: Applications of a Poisson distribution series on the analytic functions. In: AIP Conference Proceedings 2017, vol. 1833, No. 1, p. 020012. AIP Publishing, New York (2017)

    Google Scholar 

  32. Owa, S.: Some applications of the fractional calculus. Res. Notes Math. 138, 164–175 (1985)

    MathSciNet  Google Scholar 

  33. Owa, S., Aouf, M.K.: On subclasses of univalent functions with negative coefficients. East Asian Math. J. 4, 57–73 (1988)

    Google Scholar 

  34. Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H.M.: Close-to-convexity, starlikeness, and convexity of certain analytic functions. Appl. Math. Lett. 15(1), 63–69 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pescar, V.: A new generalization of Ahlforss and Beckers criterion of univalence. Bull. Malays. Math. Sci. Soc. (Second. Ser.) 19, 53–54 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Pescar, V.: Univalence of certain integral operators. Acta Univ. Apulensis 12, 43–48 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Podlubny, I.: Fractional Differential Equations. Academic, San Diego

    Google Scholar 

  38. Ponnusamy, S., Ronning, F.: Geometric properties for convolutions of hypergeometric functions and functions with the derivative in a halfplane. Integr. Transform. Spec. Funct. 8(1–2), 121–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ponnusamy, S., Singh, V., Vasundhra, P.: Starlikeness and convexity of an integral transformisntegral transform. Integr. Transform. Spec. Funct. 15(3), 267–280 (2004)

    Article  MATH  Google Scholar 

  40. Ponnusamy, S., Vuorinen, M.: Univalence and convexity properties for confluent hypergeometric functions. Complex Var. Elliptic Equ. 36(1), 73–97 (1998)

    MathSciNet  MATH  Google Scholar 

  41. Ponnusamy, S., Vuorinen, M.: Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 1, 327–353 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Porwal, S.: An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. Art. ID 984135, 1–3 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Porwal, S., Dixit, K.K.: An application of generalized Bessel functions on certain analytic functions. In: Acta Universitatis Matthiae Belii. Series Mathematics, pp. 51–57 (2013)

    Google Scholar 

  44. Prajapat, J.K.: Certain geometric properties of the Wright function. Integr. Transform. Spec. Funct. 26(3), 203–212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Raza, M., Din, M.U., Malik, S.N.: Certain geometric properties of normalized Wright functions. J. Funct. Spaces Article ID 1896154, p. 8 (2016). http://dx.doi.org/10.1155/2016/1896154

  46. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Translated from the 1987 Russian Original. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  47. Srivastava, H.M., Owa, S.: Current Topics in Analytic Function Theory. World Scientific, Singapore (1992)

    Book  MATH  Google Scholar 

  48. Topkaya, S., Mustafa, N.: The general subclasses of the analytic functions and their various properties. Asian Res. J. Math. 7(4), 1–12 (2017)

    Article  Google Scholar 

  49. Wright, E.M.: On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1(1), 71–79 (1933)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizami Mustafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mustafa, N., Nezir, V., Dutta, H. (2020). Geometric Properties of Normalized Wright Functions. In: Dutta, H., Peters, J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications. Studies in Systems, Decision and Control, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-99918-0_22

Download citation

Publish with us

Policies and ethics