Skip to main content

Modeling Highly Random Dynamical Infectious Systems

  • Chapter
  • First Online:
Applied Mathematical Analysis: Theory, Methods, and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 177))

Abstract

Random dynamical processes are ubiquitous in all areas of life:- in the arts, in the sciences, in the social sciences and engineering systems etc. The rates of various types of processes in life are subject to random fluctuations leading to variability in the systems. The variabilities give rise to white noise which lead to unpredictability about the processes in the systems. This chapter exhibits compartmental random dynamical models involving stochastic systems of differential equations, Markov processes, and random walk processes etc. to investigate random dynamical processes of infectious systems such as infectious diseases of humans or animals, the spread of rumours in social networks, and the spread of malicious signals on wireless sensory networks etc. A step-to-step approach to identify, and represent the various constituents of random dynamic processes in infectious systems is presented. In particular, a method to derive two independent environmental white noise processes, general nonlinear incidence rates, and multiple random delays in infectious systems is presented. A unique aspect of this chapter is that the ideas, mathematical modeling techniques and analysis, and the examples are delivered through original research on the modeling of vector-borne diseases of human beings or other species. A unique method to investigate the impacts of the strengths of the noises on the overall outcome of the infectious system is presented. Numerical simulation results are presented to validate the results of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A sub-life cycle may refer to a phase where the organism exhibits different behavioral characteristics.

  2. 2.

    A half-life is a series of intermediary developmental stages of the organism between the egg age and adult or sexual age of the organism.

  3. 3.

    The intensity levels of the white noise processes in the system are described as infinitesimally small, significant in magnitude and small but not infinitesimally small, big in size and finite, and sufficiently large.

  4. 4.

    A seed is set on the random number generator to reproduce the same sequence of random numbers for the Brownian motion in order to generate reliable graphs for the trajectories of the system under different intensity values for the white noise processes, so that comparison can be made to identify differences that reflect the effect of intensity values.

  5. 5.

    That is, \(\sigma _{\beta }=O(1)\).

  6. 6.

    That is \(\sigma _{S}=\theta (\frac{1}{\epsilon })\).

  7. 7.

    That is, \(\sigma _{i}=\theta (\frac{1}{\epsilon }), i= S, E, I, R\).

References

  1. Kawachi, K.: Deterministic models for rumor transmission. Nonlinear Anal.: R. Word Appl. 9, 1989–2028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Keshri, N., Mishra, B.: Two time-delay dynamic model on the transmission of malicoius signals in wireless sensor network. Chaos, Soliton Fractals 68, 151–158 (2014)

    Article  MATH  Google Scholar 

  3. Leclerc, M., Dore, T., Gilligan, C.A., Lucas, P., Filipe, J.A.N.: Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases. PLoS ONE 9(1) (2014)

    Article  Google Scholar 

  4. Zhang, Z., Yang, H.: Stability and Hopf bifurcation in a delayed SEIRS worm model in computer network. Math. Probl. Eng. 2013, 9 (2013)

    Google Scholar 

  5. De la Sena, M., Alonso-Quesadaa, S., Ibeasb, A.: On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules. Appl. Math. Comput. 270, 953–976 (2015)

    Google Scholar 

  6. Du, N.H., Nhu, N.N.: Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises. Appl. Math. Lett. 64, 223–230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jianga, Z., Mab, W., Wei, J.: Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model. Math. Comput. Simul. 122, 35–54 (2016)

    Article  MathSciNet  Google Scholar 

  8. Liu, Q., Chen, Q.: Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 428, 140–153 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, Qun, Jiang, Daqing, Shi, Ningzhong, Hayat, Tasawar, Alsaedi, Ahmed: Asymptotic behaviors of a stochastic delayed SIR epidemic model with nonlinear incidence. Commun. Nonlinear Sci. Numer. Simul. 40, 89–99 (2016). November

    Article  MathSciNet  MATH  Google Scholar 

  10. Mateusa, J.P., Silvab, C.M.: Existence of periodic solutions of a periodic SEIRS model with general incidence. Nonlinear Anal.: R. World Appl. 34, 379–402 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wanduku, D.: Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbation. Appl. Math. Comput. 294, 49–76 (2017)

    MathSciNet  Google Scholar 

  12. Wanduku, D., Ladde, G.S.: Fundamental properties of a two-scale network stochastic human epidemic dynamic model. Neural, Parallel, Sci. Comput. 19, 229–270 (2011)

    MathSciNet  MATH  Google Scholar 

  13. De la Sen, M., Alonso-Quesada, S., Ibeas, A.: On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules. Appl. Math. Comput. 270, 953–976 (2015)

    Google Scholar 

  14. Mateus, J.P., Silva, C.M.: A non-autonomous SEIRS model with general incidence rate. Appl. Math. Comput. 247, 169–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bai, Z., Zhou, Y.: Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate. Nonlinear Anal.: R. World Appl. 13(3), 1060–1068 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kyrychko, Y.N., Blyussb, K.B.: Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal.: R. World Appl. 6(3), 495–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wanduku, D., Ladde, G.S.: Global properties of a two-scale network stochastic delayed human epidemic dynamic model. Nonlinear Anal.: R. World Appl. 13, 794–816 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cooke, K.L., van den Driessche, P.: Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 35(2), 240–260 (1996). Dec

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, S., Teng, Z., Xie, D.: The effects of pulse vaccination on SEIR model with two time delays. Appl. Math. Comput. 201(12), 282–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sampath Aruna Pradeep, B.G., Ma, W.: Global stability analysis for vector transmission disease dynamic model with non-linear incidence and two time delays. J. Interdiscip. Math. 18(4) (2015)

    Google Scholar 

  21. Cooke, K.L.: Stability analysis for a vector disease model. Rocky Mt. J. Math. 9(1) 31–42 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Takeuchi, Y., Ma, W., Beretta, E.: Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Anal. 42, 931–947 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Beretta, E., Kolmanovskii, V., Shaikhet, L.: Stability of epidemic model with time delay influenced by stochastic perturbations. Math. Comput. Simul. 45, 269–277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, Y., Zhang, W., Yuan, S., Hu, H.: Persistence and extinction in stochastic sirs models with general nonlinear incidence rate. Electron. J. Differ. Equ. 2014(42), 1–17 (2014)

    Google Scholar 

  25. Zhu, L., Hu, H.: A stochastic SIR epidemic model with density dependent birth rate. Adv. Differ. Equ. 2015, 330 (2015)

    Google Scholar 

  26. http://www.who.int/denguecontrol/human/en/

  27. https://www.cdc.gov/malaria/about/disease.html

  28. Doolan, D.L., Dobano, C., Baird, J.K.: Acquired immunity to malaria. Clin. Microbiol. Rev. 22(1), 13–36 (2009)

    Article  Google Scholar 

  29. Hviid, L.: Naturally acquired immunity to Plasmodium falciparum malaria. Acta Trop. 95(3), 270–275 (2005). October

    Article  Google Scholar 

  30. Capasso V, Serio G.A.: A generalization of the Kermack-Mckendrick deterministic epidemic model. Math. Biosci. 42, 43 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huo, H.-F., Ma, Z.-P.: Dynamics of a delayed epidemic model with non-monotonic incidence rate. Commun. Nonlinear Sci. Numer. Simul. 15(2), 459–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208(2), 419–429 (2007). Aug

    Article  MathSciNet  MATH  Google Scholar 

  33. Xue, Y., Duan, X.: Dynamic analysis of an sir epidemic model with nonlinear incidence rate and double delays. Int. J. Inf. Syst. Sci. 7(1), 92–102 (2011)

    Google Scholar 

  34. Capasso, V.: Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics, vol. 97 (1993)

    Book  MATH  Google Scholar 

  35. Muroya, Y., Enatsu, Y., Nakata, Y.: Global stability of a delayed SIRS epidemic model with a non-monotonic incidence rate. J. Math. Anal. Appl. 377(1), 1–14 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Korobeinikov, A., Maini, P.K.: A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math. Biosci. Eng. 1(1), 57–60 (2004)

    Google Scholar 

  37. Liu, W.M., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25(4), 359–380 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, W.M., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chiyaka, C. et al.: transmission model of endemic human malaria in a partially immune population. Math. Comput. Model. 46, 806–822 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Allen, E.J., Allen, L.J.S., Arciniega, A., Greenwood, P.: Construction of equivalent stochastic differential equation models. Stoch. Anal. Appl. 26, 274–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ladde, A.G., Ladde, G.S.: An Introduction to Differential Equations: Stochastic Modelling, Methods and Analysis, vol. 2. World Scientific Publishing, Singapore (2013)

    Google Scholar 

  42. Allen, E.J.: Environmental variability and mean-reverting processes. Discret. Contin. Dyn. Syst. 21, 2073–2089 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cai, Y., jiao, J., Gui, Z., liu, Y. et al.: Environmental variability in a stochastic epidemic model. Appl. Math. Compuat. 329, 210–226 (2018)

    Article  MathSciNet  Google Scholar 

  44. Moghadas, S.M., Gumel, A.B.: Global Statbility of a two-stage epidemic model with generalized nonlinear incidence. Math. Comput. Simul. 60, 107–118 (2002)

    Article  MATH  Google Scholar 

  45. Wanduku, D., Ladde, G.S.: Global analysis of a stochastic two-scale network human epidemic dynamic model with varying immunity period. (Accepted (2013) and to appear in J. Appl. Math. Phys.)

    Google Scholar 

  46. Xuerong, M.: Stochastic Differential Equations and Applications, 2nd edn. Horwood Publishing Ltd., Sawston (2008)

    Google Scholar 

  47. Mao, X.: Stochastic Differential Equations and Application, 2nd edn. Woodhead Publishing, Sawston (2007)

    Google Scholar 

  48. Murray, M., li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, LLC, Boca Raton (1994)

    Book  MATH  Google Scholar 

  49. Shaikhet, L.: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. Springer, Berlin (2013)

    Chapter  MATH  Google Scholar 

  50. Wanduku, D., Ladde, G.S.: Global stability of two-scale network human epidemic dynamic model. Neural, Parallel, Sci. Comput. 19, 65–90 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divine Wanduku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wanduku, D. (2020). Modeling Highly Random Dynamical Infectious Systems. In: Dutta, H., Peters, J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications. Studies in Systems, Decision and Control, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-99918-0_17

Download citation

Publish with us

Policies and ethics