Skip to main content

Dynamics of a Class of Leslie–Gower Predation Models with a Non-Differentiable Functional Response

  • Chapter
  • First Online:
Applied Mathematical Analysis: Theory, Methods, and Applications

Abstract

The main peculiarity of the Leslie–Gower type models is the predator growth equation is the logistic type, in which the environmental carrying capacity is proportional to the prey population size. This assumption implies the predators are specialists. Considering that the predator is generalist, the environmental carrying capacity is modified adding a positive constant. In this work, the two simple classes of Leslie–Gower type predator-prey models are analyzed, considering a non-usual functional response, called Rosenzweig or power functional responses, being its main feature that is non-differentiable over the vertical axis. Just as Volterra predator-prey model, when the Rosenzweig functional response is incorporated, the systems describing the models have distinctive properties from the original one; moreover, differences between them are established. One of the main properties proved is the existence of a wide set of parameter values for which a separatrix curve, dividing the phase plane in two complementary sectors. Trajectories with initial conditions upper this curve have the origin or a point over the vertical axis as their \(\omega \)-limit. Meanwhile those trajectories with initial conditions under this curve can have a positive equilibrium point, or a limit cycle or a heteroclinic curve as their \(\omega \)-limit. The marked differences between the two cases studied shows as a little change in the mathematical expressions to describe the models can produce rich dynamics. In other words, little perturbations over the functions representing predator interactions have significant consequences on the behavior of the solutions, without change the general structure in the classical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajraldi, V., Pittavino, M., Venturino, E.: Modeling herd behavior in population systems. Nonlinear Anal.: R. World Appl. 12, 2319–2338 (2011)

    Article  MathSciNet  Google Scholar 

  2. Arancibia-Ibarra, C., González-Olivares, E.: A modified Leslie-Gower predator-prey model with hyperbolic functional response and Allee effect on prey. In: Mondaini, R. (ed.) BIOMAT 2010 International Symposium on Mathematical and Computational Biology, pp. 146–162. World Scientific Co. Pte. Ltd., Singapore

    Google Scholar 

  3. Ardito, A., Ricciardi, P.: Lyapunov functions for a generalized Gause-type model. J. Math. Biol. 33, 816–828 (1995)

    Google Scholar 

  4. Aziz-Alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific Publishing Co. Pte. Ltd., Singapore (1998)

    Google Scholar 

  6. Bera, S.P., Maiti, A., Samanta, G.P.: Modelling herd behavior of prey: analysis of a prey-predator model. World J. Model. Simul. 11, 3–14 (2015)

    Google Scholar 

  7. Berryman, A.A., Gutierrez, A.P., Arditi, R.: Credible, parsimonious and useful predator-prey models - a reply to Abrams, Gleeson, and Sarnelle. Ecology 76, 1980–1985 (1995)

    Article  Google Scholar 

  8. Bravo, J.L., Fernández, M., Gámez, M., Granados, B., Tineo, A.: Existence of a polycycle in non-Lipschitz Gause-type predator-prey models. J. Math. Anal. Appl. 373, 512–520 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chicone, C.: Ordinary Differential Equations with Applications. Texts in Applied Mathematics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 2nd edn. Wiley, New York (1990)

    MATH  Google Scholar 

  11. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Freedman, H.I.: Deterministic Mathematical Model in Population Ecology. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  13. Gause, G.F.: The Struggle for Existence. Dover, New York (1934)

    Book  Google Scholar 

  14. González-Olivares, E., Sáez, E., Stange, E., Szantó, I.: Topological description of a non-differentiable bio-economics model. Rocky Mt. J. Math. 35(4), 1133–1155 (2005)

    Article  Google Scholar 

  15. González-Olivares, E., Mena-Lorca, J., Rojas-Palma, A., Flores, J.D.: Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey. Appl. Math. Model. 35, 366–381 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hesaaraki, M., Moghadas, S.M.: Existence of limit cycles for predator-prey systems with a class of functional responses. Ecol. Model. 142, 1–9 (2001)

    Article  Google Scholar 

  17. Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14, 697–699 (2001)

    Article  MathSciNet  Google Scholar 

  18. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrica 35, 213–245 (1948)

    Article  MathSciNet  Google Scholar 

  19. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometricka 47, 219–234 (1960)

    Article  MathSciNet  Google Scholar 

  20. May, R.M.: Stability and Complexity in Model Ecosystems, 2nd edn. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  21. Melchionda, D., Pastacaldi, E., Perri, C., Banerjee, M., Venturino, E.: Social behavior-induced multistability in minimal competitive ecosystems. J. Theor. Biol. 439, 24–38 (2018)

    Article  MathSciNet  Google Scholar 

  22. Monzón, P.: Almost global attraction in planar systems. Syst. Control Lett. 54, 753–758 (2005)

    Article  MathSciNet  Google Scholar 

  23. Myerscough, M.R., Darwen, M.J., Hogarth, W.L.: Stability, persistence and structural stability in a classical predator-prey model. Ecol. Model. 89, 31–42 (1996)

    Article  Google Scholar 

  24. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, Berlin (2001)

    Book  Google Scholar 

  25. Ramos-Jiliberto, R., González-Olivares, E.: Regulaci de la tasa intrínseca de crecimiento poblacional de los depredadores: modificación auna clase de modelos de depredación. Rev. Chil. Hist. Nat. 69, 271–280 (1996). (in spanish)

    Google Scholar 

  26. Rantzer, A.: A dual to Lyapunov’s stability theorem. Syst. Control Lett. 42(3), 161–168 (2001)

    Article  MathSciNet  Google Scholar 

  27. Rivera-Estay, V.: Un modelo de Leslie-Gower con respuesta funcional no diferenciable (A Leslie-Gower type model with non-differentiable functional respose). Instituto de Matemáticas at the Pontificia Universidad Católica de Valparaí so, Licenciate final work (2013). in spanish

    Google Scholar 

  28. Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystem in ecological time. Science 171, 385–387 (1971)

    Article  Google Scholar 

  29. Sáez, E., González-Olivares, E.: Dynamics on a predator-prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)

    Article  MathSciNet  Google Scholar 

  30. Sáez, E., Szántó, I.: A polycycle and limit cycles in a non-differentiable predator-prey model. Proc. Indian Acad. Sci. Math. Sci. 117, 219–231 (2007)

    Article  MathSciNet  Google Scholar 

  31. Turchin, P.: Complex Population Dynamics: A Theoretical/Empirical Synthesis. Mongraphs in Population Biology. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  32. Venturino, E., Petrovskii, S.: Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecol. Complex. 14, 37–47 (2013)

    Article  Google Scholar 

  33. Vilches-Ponce, K., Dinámicas de un modelo de depredaci ón del tipo Gause con respuesta funcional no diferenciable (Dynamics of a Gause type predator-prey model with non-differentiable functional response) Master thesis, Instituto de Matemáticas at the Pontificia Universidad Católica de Valparaíso (2009), in spanish

    Google Scholar 

  34. Vilches, K., González-Olivares, E., Rojas-Palma, A.: Prey herd behavior modeled by a generic non-differential functional response. Math. Model. Nat. Phenom. 13(3), 26 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been sponsorship by Mathematical Modeling and Pattern Recognition (GMMRP), Chile (www.biomatematica.cl). The second author was partially financed by the DIEA-PUCV 124.730/2012 project. The fourth author was supported by Conicyt PAI-Academia 79150021 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo González-Olivares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivera-Estay, V., González-Olivares, E., Rojas-Palma, A., Vilches-Ponce, K. (2020). Dynamics of a Class of Leslie–Gower Predation Models with a Non-Differentiable Functional Response. In: Dutta, H., Peters, J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications. Studies in Systems, Decision and Control, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-99918-0_14

Download citation

Publish with us

Policies and ethics