Skip to main content

In-Situ Measurement of Tribochemical Processes in Ultrahigh Vacuum

  • Chapter
  • First Online:
Advanced Analytical Methods in Tribology

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 1155 Accesses

Abstract

Monitoring chemical reactions occurring at a solid-solid interface is particularly challenging because of the problem of analyzing a buried interface with surface-sensitive spectroscopic techniques. This can, to some extent, be addressed if one of the contacting materials is transparent. In the case of optically opaque materials that are often of the greatest tribological interest, truly in-situ techniques are limited to the detection of gas-phase products formed by rubbing in high vacuum using a mass spectrometer, or by monitoring the contact resistance or friction coefficient variations during sliding. Optical techniques such as infrared spectroscopy can be used when one of the materials is transparent. The results of such in-situ analyses can be corroborated by using so-called pseudo in-situ techniques to analyze the surfaces after rubbing without exposing the samples to the atmosphere. Examples of such techniques are Auger spectroscopy and low-energy electron diffraction. Finally, the use of these approaches is illustrated using a simple model tribochemical reaction consisting of the gas-phase lubrication of copper by dimethyl disulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.J. Blunt, P.V. Kotvis, W.T. Tysoe, Determination of interfacial temperatures under extreme pressure conditions. Tribol. Lett. 2(3), 221–230 (1996)

    Google Scholar 

  2. K. Holmberg, P. Andersson, A. Erdemir, Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234

    Article  Google Scholar 

  3. K.J. Laidler, Chemical kinetics (McGraw-Hill, New York, 1965)

    Google Scholar 

  4. O.A. Mazyar, H. Xie, W.L. Hase, Nonequilibrium energy dissipation at the interface of sliding model hydroxylated α-alumina surfaces. J Chem. Phys. 122(9), 094713 (2005)

    Article  Google Scholar 

  5. W.G. Sawyer, K.J. Wahl, Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bulletin 33(12), 1145–1150 (2008)

    Article  Google Scholar 

  6. S. Mori, W. Morales, Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature. Wear 132(1), 111–121 (1989). https://doi.org/10.1016/0043-1648(89)90206-8

    Article  CAS  Google Scholar 

  7. I. Minami, T. Kubo, S. Fujiwara, Y. Ogasawara, H. Nanao, S. Mori, Investigation of tribo-chemistry by means of stable isotopic tracers: TOF-SIMS analysis of langmuir-Blodgett films and examination of their tribological properties. Tribol. Lett. 20(3–4), 287–297 (2005). https://doi.org/10.1007/s11249-005-9068-2

    Article  CAS  Google Scholar 

  8. H.L. Adams, M.T. Garvey, U.S. Ramasamy, Z. Ye, A. Martini, W.T. Tysoe, Shear-induced mechanochemistry: Pushing molecules around. J. Phys. Chem. C 119(13), 7115–7123 (2015). https://doi.org/10.1021/jp5121146

    Article  CAS  Google Scholar 

  9. P.A. Redhead, Thermal desorption of gases. Vacuum 12, 9 (1962)

    Article  CAS  Google Scholar 

  10. O.J. Furlong, B.P. Miller, Z. Li, J. Walker, L. Burkholder, W.T. Tysoe, The surface chemistry of dimethyl disulfide on copper. Langmuir 26(21), 16375–16380 (2010). https://doi.org/10.1021/la101769y

    Article  CAS  Google Scholar 

  11. O. Furlong, B. Miller, Z. Li, W.T. Tysoe, The surface chemistry of diethyl disulfide on copper. Surf. Sci. 605(5–6), 606–611 (2011). https://doi.org/10.1016/j.susc.2010.12.026

    Article  CAS  Google Scholar 

  12. O. Furlong, B. Miller, W. Tysoe, Shear-induced surface-to-bulk transport at room temperature in a sliding metal-metal interface. Tribol. Lett. 41(1), 257–261 (2011). https://doi.org/10.1007/s11249-010-9711-4

    Article  Google Scholar 

  13. R.G. Greenler, Reflection method for obtaining the infrared spectrum of a thin layer on a metal surface. J. Chem. Phys. 50(5), 1963–1968 (1969). https://doi.org/10.1063/1.1671315

    Article  CAS  Google Scholar 

  14. G. Wu, F. Gao, M. Kaltchev, J. Gutow, J.K. Mowlem, W.C. Schramm, P.V. Kotvis, W.T. Tysoe, An investigation of the tribological properties of thin KCl films on iron in ultrahigh vacuum: modeling the extreme-pressure lubricating interface. Wear 252(7–8), 595–606 (2002)

    Article  CAS  Google Scholar 

  15. J.R. Felts, A.J. Oyer, S.C. Hernández, K.E. Whitener Jr., J.T. Robinson, S.G. Walton, P.E. Sheehan, Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015). https://doi.org/10.1038/ncomms7467

  16. A. Cameron, R. Gohar, Theoretical and experimental studies of the oil film in lubricated point contact. ‎Proc. Royal Soc. A Mathematical, Phys. Eng. Sci. 291(1427), 520–536 (1966)

    Google Scholar 

  17. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced Raman spectroscopy. ‎Annu. Rev. Anal. Chem. 1(1), 601–626 (2008)

    Article  CAS  Google Scholar 

  18. R.G. Greenler, Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 44(1), 310–315 (1966). https://doi.org/10.1063/1.1726462

    Article  CAS  Google Scholar 

  19. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978)

    Google Scholar 

  20. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 2nd edn. (Academic Press, New York, 1975)

    Chapter  Google Scholar 

  21. F.M. Piras, A. Rossi, N.D. Spencer, Growth of tribological films: a in situ characterization based on attenuated total reflection infrared spectroscopy. Langmuir 18(17), 6606–6613 (2002)

    Article  CAS  Google Scholar 

  22. F. Mangolini, A. Rossi, N.D. Spencer, Chemical reactivity of triphenyl phosphorothionate (TPPT) with Iron: an ATR/FT-IR and XPS investigation. J. Phys. Chem. C 115(4), 1339–1354 (2010)

    Article  Google Scholar 

  23. E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys. 50(6), 499–537 (2001). https://doi.org/10.1080/00018730110102187

    Article  Google Scholar 

  24. B. Briggs, M.P. Seah, Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy (Wiley, New York, 1996)

    Google Scholar 

  25. J.C. Vickerman, Surface Analysis: The Principal Techniques (Wiley, Chichester, 1997)

    Google Scholar 

  26. T.W. Haas, J.T. Grant, G.J. Dooley III, Chemical effects in auger electron spectroscopy. J. Appl. Phys. 43(4), 1853–1860 (1972)

    Article  CAS  Google Scholar 

  27. S. Mroczkowski, D. Lichtman, Calculated Auger yields and sensitivity factors for KLL–NOO transitions with 1–10 kV primary beams. J. Vac. Sci. Technol. A: Vac. Surf. Films 3(4), 1860–1865 (1985)

    Article  CAS  Google Scholar 

  28. L.D. Broglie, A tentative theory of light quanta. Philos. Mag. Ser. 6 47(278), 446–458 (1924). https://doi.org/10.1080/14786442408634378

    Article  Google Scholar 

  29. C. Davisson, L.H. Germer, Diffraction of electrons by a crystal of nickel. Phys. Rev. 30(6), 705–740 (1927)

    Article  CAS  Google Scholar 

  30. J.B. Pendry, Low Energy Electron Diffraction : The Theory and Its Application to Determination of Surface Structure (Academic Press, London, 1974)

    Google Scholar 

  31. D.H. Buckley, A LEED Study of the Adhesion of Gold to Copper and Copper-Aluminum Alloys. NASA Technical Report NASA-TN-D-5351 (1969)

    Google Scholar 

  32. N.N. Gosvami, J.A. Bares, F. Mangolini, A.R. Konicek, D.G. Yablon, R.W. Carpick, Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science (2015). https://doi.org/10.1126/science.1258788

    Article  CAS  Google Scholar 

  33. J. Zhang, H. Spikes, On the Mechanism of ZDDP antiwear film formation. Tribol. Lett. 63(2), 1–15 (2016). https://doi.org/10.1007/s11249-016-0706-7

  34. W. Davey, E.D. Edwards, The extreme-pressure lubricating properties of some sulphides and disulphides, in mineral oil, as assessed by the four-ball machine. Wear 1(4), 291–304 (1958). https://doi.org/10.1016/0043-1648(58)90002-4

    Article  CAS  Google Scholar 

  35. E.S. Forbes, The load-carrying action of organo-sulphur compounds—A review. Wear 15(2), 87–96 (1970). https://doi.org/10.1016/0043-1648(70)90002-5

    Article  CAS  Google Scholar 

  36. M. Kaltchev, P.V. Kotvis, T.J. Blunt, J. Lara, W.T. Tysoe, A molecular beam study of the tribological chemistry of dialkyl disulfides. Tribol. Lett. 10(1), 45–50 (2001). https://doi.org/10.1023/a:1009020725936

    Article  CAS  Google Scholar 

  37. J. Lara, T. Blunt, P. Kotvis, A. Riga, W.T. Tysoe, Surface chemistry and extreme-pressure lubricant properties of dimethyl disulfide. J. Phys. Chem. B 102(10), 1703–1709 (1998). https://doi.org/10.1021/jp980238y

    Article  CAS  Google Scholar 

  38. O.J. Furlong, B.P. Miller, P. Kotvis, W.T. Tysoe, Low-temperature, Shear-induced tribofilm formation from dimethyl disulfide on copper. ‎ACS Appl. Mater. Interfaces 3(3), 795–800 (2011)

    Article  CAS  Google Scholar 

  39. O.J. Furlong, B.P. Miller, P. Kotvis, W.T. Tysoe, Low-temperature, shear-induced tribofilm formation from dimethyl disulfide on copper. ACS Appl. Mater. Interfaces 3(3), 795–800 (2011). https://doi.org/10.1021/am101149p

    Article  CAS  Google Scholar 

  40. D.A. Rigney, Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245(1–2), 1–9 (2000). https://doi.org/10.1016/s0043-1648(00)00460-9

    Article  CAS  Google Scholar 

  41. X.-Y. Fu, D.A. Rigney, M.L. Falk, Sliding and deformation of metallic glass: Experiments and MD simulations. J. Non-Cryst. Solids 317(1–2), 206–214 (2003). https://doi.org/10.1016/s0022-3093(02)01999-3

    Article  CAS  Google Scholar 

  42. H.J. Kim, W.K. Kim, M.L. Falk, D.A. Rigney, MD simulations of microstructure evolution during high-velocity sliding between crystalline materials. Tribol. Lett. 28(3), 299–306 (2007). https://doi.org/10.1007/s11249-007-9273-2

    Article  Google Scholar 

  43. A. Emge, S. Karthikeyan, H.J. Kim, D.A. Rigney, The effect of sliding velocity on the tribological behavior of copper. Wear 263, 614–618 (2007). https://doi.org/10.1016/j.wear.2007.01.095

    Article  CAS  Google Scholar 

  44. S. Karthikeyan, H.J. Kim, D.A. Rigney, Velocity and strain-rate profiles in materials subjected to unlubricated sliding. Phys. Rev. Lett. 95(10), 106001 (2005). https://doi.org/10.1103/physrevlett.95.106001

  45. A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, M.A. Meyers, High-strain-rate response of ultra-fine-grained copper. Acta Mater. 56(12), 2770–2783 (2008). https://doi.org/10.1016/j.actamat.2008.02.023

    Article  CAS  Google Scholar 

  46. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427–556 (2006). https://doi.org/10.1016/j.pmatsci.2005.08.003

    Article  CAS  Google Scholar 

  47. A. Mishra, B.K. Kad, F. Gregori, M.A. Meyers, Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Mater. 55(1), 13–28 (2007). https://doi.org/10.1016/j.actamat.2006.07.008

    Article  CAS  Google Scholar 

  48. T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. 104(9), 3031–3036 (2007). https://doi.org/10.1073/pnas.0611097104

    Article  CAS  Google Scholar 

  49. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159–5172 (2003). https://doi.org/10.1016/s1359-6454(03)00365-3

    Article  CAS  Google Scholar 

  50. Y.F. Shen, L. Lu, M. Dao, S. Suresh, Strain rate sensitivity of Cu with nanoscale twins. Scripta Mater. 55(4), 319–322 (2006). https://doi.org/10.1016/j.scriptamat.2006.04.046

    Article  CAS  Google Scholar 

  51. H.W. Höppel, J. May, M. Göken, Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding. Adv. Eng. Mater. 6(9), 781–784 (2004). https://doi.org/10.1002/adem.200306582

    Article  Google Scholar 

  52. G.T. Gray III, T.C. Lowe, C.M. Cady, R.Z. Valiev, I.V. Aleksandrov, Influence of strain rate and temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al–4Cu–0.5Zr. Nanostruct. Mater. 9(1–8), 477–480 (1997). https://doi.org/10.1016/s0965-9773(97)00104-9

    Article  CAS  Google Scholar 

  53. B. Miller, O. Furlong, W. Tysoe, The kinetics of shear-induced boundary film formation from dimethyl disulfide on copper. Tribol. Lett. 49(1), 39–46 (2013). https://doi.org/10.1007/s11249-012-0040-7

    Article  Google Scholar 

  54. H. Adams, B.P. Miller, P.V. Kotvis, O.J. Furlong, A. Martini, W.T. Tysoe, In situ measurements of boundary film formation pathways and kinetics: Dimethyl and diethyl disulfide on copper. Tribol. Lett. 62(1), 1–9 (2016). https://doi.org/10.1007/s11249-016-0664-0

  55. P.J. Cumpson, Angle-resolved XPS and AES: Depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J. Electron Spectrosc. Relat. Phenom. 73(1), 25–52 (1995). https://doi.org/10.1016/0368-2048(94)02270-4

    Article  CAS  Google Scholar 

  56. G. Bell, Models for the specific adhesion of cells to cells. Science 200(4342), 618–627 (1978). https://doi.org/10.1126/science.347575

    Article  CAS  Google Scholar 

  57. H. Spikes, W. Tysoe, On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol. Lett. 59(1), 1–14 (2015). https://doi.org/10.1007/s11249-015-0544-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tysoe, W.T. (2018). In-Situ Measurement of Tribochemical Processes in Ultrahigh Vacuum. In: Dienwiebel, M., De Barros Bouchet, MI. (eds) Advanced Analytical Methods in Tribology. Microtechnology and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-319-99897-8_5

Download citation

Publish with us

Policies and ethics