Skip to main content

Abstract

Water measurement let alone bound water in food materials is a challenging task due to its diverse composition and structural matrix. Complex interactions between water and other components of food materials hinders the tracing of bound water. Moreover, all of the bound water measurement techniques follows certain set of assumptions. These assumptions result in inaccuracy to some extent. In this chapter, common challenges in overall water content measurement. Following this, specific challenges associated with individual techniques of bound water measurement has been discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Makower, Determination of Water in Some Dehydrated Foods (ACS Publications, Washington, DC, 1950)

    Book  Google Scholar 

  2. S. Yazgan, A. Bernreuther, F. Ulberth, H.-D. Isengard, Water–an important parameter for the preparation and proper use of certified reference materials. Food Chem. 96(3), 411–417 (2006)

    Article  CAS  Google Scholar 

  3. R.J. De Knegt, H. Van den Brink, Improvement of the drying oven method for the determination of the moisture content of milk powder. Int. Dairy J. 8(8), 733–738 (1998)

    Article  Google Scholar 

  4. C. Reh, S.N. Bhat, S. Berrut, Determination of water content in powdered milk. Food Chem. 86(3), 457–464 (2004)

    Article  CAS  Google Scholar 

  5. D. Reid, Water determination in food, in Encyclopedia of Analytical Chemistry (2006)

    Google Scholar 

  6. G. Favetto, J. Chirife, G. Bartholomai, Determination of moisture content in glycerol-containing intermediate moisture foods. J. Food Sci. 44(4), 1258–1259 (1979)

    Article  CAS  Google Scholar 

  7. C. Sánchez-Moreno, J.A. Larrauri, F. Saura-Calixto, A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 76(2), 270–276 (1998)

    Article  Google Scholar 

  8. H.D. Isengard, Rapid water determination in foodstuffs. Trends Food Sci. Technol. 6(5), 155–162 (1995)

    Article  CAS  Google Scholar 

  9. C.A. De Caro, A. Aichert, C.M. Walter, Efficient, precise and fast water determination by the Karl Fischer titration. Food Control 12(7), 431–436 (2001)

    Article  Google Scholar 

  10. H.-D. Isengard, P. Heinze, Determination of total water and surface water in sugars. Food Chem. 82(1), 169–172 (2003)

    Article  CAS  Google Scholar 

  11. S. Nomura, A. Hiltner, J.B. Lando, E. Baer, Interaction of water with native collagen. Biopolymers 16(2), 231–246 (1977)

    Article  CAS  PubMed  Google Scholar 

  12. J.M. Preston, G.P. Tawde, 10—Freezing point depression in assemblages of moist fibres. J. Text. Inst. Trans. 47(3), T154–T165 (1956)

    Article  CAS  Google Scholar 

  13. E.L. Andronikashvili, G.M. Mrevlishvili, V.M. Sokhadze, K.A. Kvavadze, Thermal properties of collagen in helical and random coiled states in the temperature range from 4° to 300° K. Biopolymers 15(10), 1991–2004 (1976)

    Article  CAS  Google Scholar 

  14. M.F. Froix, R. Nelson, The interaction of water with cellulose from nuclear magnetic resonance relaxation times. Macromolecules 8(6), 726–730 (1975)

    Article  CAS  Google Scholar 

  15. I.H. Khan, M.A. Karim, Cellular water distribution, transport, and its investigation methods for plant-based food material. Food Res. Int. 99(Pt 1), 1–14 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. M.U.H. Joardder, R.J. Brown, C. Kumar, M.A. Karim, Effect of cell wall properties on porosity and shrinkage of dried apple. Int. J. Food Prop. 18(10), 2327–2337 (2015)

    Article  Google Scholar 

  17. C.C. Wu, C. Huang, D.J. Lee, Bound water content and water binding strength on sludge flocs. Water Res. 32(3), 900–904 (1998)

    Article  CAS  Google Scholar 

  18. D.J. Lee, Interpretation of bound water data measured via dilatometric technique. Water Res. 30(9), 2230–2232 (1996)

    Article  CAS  Google Scholar 

  19. T. Hatakeyama, K. Nakamura, H. Hatakeyama, Determination of bound water content in polymers by DTA, DSC and TG. Thermochim. Acta 123, 153–161 (1988)

    Article  CAS  Google Scholar 

  20. J.D. Sayre, Methods of determining bound water in plant tissue. J. Agric. Res. 44, 669–688 (1932)

    CAS  Google Scholar 

  21. M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. Technol. 38, 252–261 (2016)

    Article  CAS  Google Scholar 

  22. M.M. Rahman, M.U.H. Joardder, A. Karim, Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosyst. Eng. 169, 126–138 (2018)

    Article  Google Scholar 

  23. J. Biscarat, C. Charmette, J. Sanchez, C. Pochat-Bohatier, Preparation of dense gelatin membranes by combining temperature induced gelation and dry-casting. J. Membr. Sci. 473, 45–53 (2015)

    Article  CAS  Google Scholar 

  24. H. Feng, J. Tang, S. John Dixon-Warren, Determination of moisture diffusivity of red delicious apple tissues by thermogravimetric analysis. Dry. Technol. 18(6), 1183–1199 (2000)

    Article  Google Scholar 

  25. V.M. da Silva, L.A. Silva, J.B. de Andrade, M.C. Veloso, G.V. Santos, Determination of moisture content and water activity in algae and fish by thermoanalytical techniques. Quim. Nova 31(4), 901–905 (2008)

    Article  Google Scholar 

  26. H.H. Webber, P.A. Dehnel, Water balance of whole animal, muscle tissue, and muscle cells in the prosobranch gastropod, Acmaea scutum. J. Exp. Zool. A Ecol. Genet. Physiol. 168(3), 327–335 (1968)

    CAS  Google Scholar 

  27. D.A. Dean, T. Ramanathan, D. Machado, R. Sundararajan, Electrical impedance spectroscopy study of biological tissues. J. Electrost. 66(3–4), 165–177 (2008)

    Article  CAS  Google Scholar 

  28. P. Dejmek, O. Miyawaki, Relationship between the electrical and rheological properties of potato tuber tissue after various forms of processing. Biosci. Biotechnol. Biochem. 66(6), 1218–1223 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. M.A. Cox, M.I.N. Zhang, J.H.M. Willison, Apple bruise assessment through electrical impedance measurements. J. Hortic. Sci. 68(3), 393–398 (1993)

    Article  Google Scholar 

  30. M. Dehghan, A.T. Merchant, Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr. J. 7(1), 26 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  31. P. Deurenberg, Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. Am. J. Clin. Nutr. 64(3), 449S–452S (1996)

    Article  CAS  PubMed  Google Scholar 

  32. R. Toledo, M.P. Steinberg, A.I. Nelson, Quantitative determination of bound water by NMR. J. Food Sci. 33(3), 315–317 (1968)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joardder, M.U.H., Mourshed, M., Hasan Masud, M. (2019). Challenges in Bound Water Measurement. In: State of Bound Water: Measurement and Significance in Food Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-99888-6_5

Download citation

Publish with us

Policies and ethics