Skip to main content

Abstract

Heterogeneous, amorphous, hygroscopic and porous properties of food materials make it complex in nature. Water is not uniformly distributed in food material. Bound water shows different characteristics in different ways. Consequently, there is no direct method reported in literature for calculating the bound water. However, several indirect approaches based on the distinct features of bound water are available in literature. In this chapter a comprehensive review on the available methods including DSC, Bound water estimation from SEM image, Dilatometry, TGA, NMR, BIA and CT scan to investigate the moisture distribution has been done. Moreover, the characterization of bound water in different approaches has also comprehensively discussed. An enhanced understanding of the measurement technique of different types of water in the food materials is vital to optimize the processing condition and eventually to achieve high-quality food product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Heertje, Structure and function of food products: a review. Food Struct. 12(3), 7 (1993)

    Google Scholar 

  2. J.M. Aguilera, D.W. Stanley, Microstructural Principles of Food Processing and Engineering (Springer Science & Business Media, Berlin, 1999)

    Google Scholar 

  3. J. Parada, J.M. Aguilera, Food microstructure affects the bioavailability of several nutrients. J. Food Sci. 72(2), R21–R32 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. M.U.H. Joardder, C. Kumar, M.A. Karim, Food structure: its formation and relationships with other properties. Crit. Rev. Food Sci. Nutr. 57(6), 1190–1205 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. E. Baer, A. Hiltner, J.X. Li, S. Bazhenov, Hierarchical Structure in Polymeric Solid and Its Influence on Properties (Case Western Reserve University Cleveland Ohio Department of Macromolecular Science, Cleveland, 1992)

    Google Scholar 

  6. R.J. Redgwell, E. MacRae, I. Hallett, M. Fischer, J. Perry, R. Harker, In vivo and in vitro swelling of cell walls during fruit ripening. Planta 203(2), 162–173 (1997)

    Article  CAS  Google Scholar 

  7. R.N. Zúñiga, J.M. Aguilera, Aerated food gels: fabrication and potential applications. Trends Food Sci. Technol. 19(4), 176–187 (2008)

    Article  Google Scholar 

  8. J.M. Aguilera, P.J. Lillford, Food Materials Science: Principles and Practice (Springer Science & Business Media, Berlin, 2007)

    Google Scholar 

  9. M.C. Alamar, E. Vanstreels, M.L. Oey, E. Moltó, B.M. Nicolaï, Micromechanical behaviour of apple tissue in tensile and compression tests: storage conditions and cultivar effect. J. Food Eng. 86(3), 324–333 (2008)

    Article  Google Scholar 

  10. A.M. Rojas, M. Delbon, A.G. Marangoni, L.N. Gerschenson, Contribution of cellular structure to the large and small deformation rheological behavior of kiwifruit. J. Food Sci. 67(6), 2143–2148 (2002)

    Article  CAS  Google Scholar 

  11. J.F.V Vincent, The composite structure of biological tissue used for food, in Food Materials Science (Springer, Berlin, 2008), pp. 11–20

    Google Scholar 

  12. M.U.H. Joardder, A. Karim, C. Kumar, R.J. Brown, Effect of cell wall properties of plant tissue on porosity and shrinkage of dried apple, in Proceedings of the 2014 International Conference on Food Properties (ICFP2014) (2014)

    Google Scholar 

  13. M.U.H. Joardder, A. Karim, C. Kumar, R.J. Brown, Porosity: Establishing the Relationship between Drying Parameters and Dried Food Quality (Springer International Publishing, Basel, 2015)

    Google Scholar 

  14. M.U.H. Joardder, M.A. Karim, C. Kumar, Better understanding of food material on the basis of water distribution using thermogravimetric analysis, in International Conference on Mechanical, Industrial and Materials Engineering (ICMIME2013), Rajshahi, Bangladesh (2013)

    Google Scholar 

  15. A. Halder, A.K. Datta, R.M. Spanswick, Water transport in cellular tissues during thermal processing. AICHE J. 57(9), 2574–2588 (2011)

    Article  CAS  Google Scholar 

  16. D. Torreggiani, Osmotic dehydration in fruit and vegetable processing. Food Res. Int. 26(1), 59–68 (1993)

    Article  Google Scholar 

  17. H.-D. Isengard, Water – A Very Common and Yet a Particular Substance (Elsevier, New York, 2001)

    Book  Google Scholar 

  18. H.-D. Isengard, Water content, one of the most important properties of food. Food Control 12(7), 395–400 (2001)

    Article  Google Scholar 

  19. H.-D. Isengard, J.-M. Färber, ‘Hidden parameters’ of infrared drying for determining low water contents in instant powders. Talanta 50(2), 239–246 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. J.E. Ayer, Determination of primary adsorbed water in cotton fibers by drying techniques. J. Polym. Sci. Part A Polym. Chem. 21(99), 455–462 (1956)

    CAS  Google Scholar 

  21. H. Hatakeyama, K. Nakamura, T. Hatakeyama, Studies on factors affecting the molecular motion of lignin and lignin-related polystyrene derivatives. Trans. Pulp. Pap. Can. 81, 105–110 (1980)

    Google Scholar 

  22. D.A.I. Goring, The effect of cellulose on the structure of water: view 1, in Fibre Water Interactions in Paper-Making, vol. 2 (1978)

    Google Scholar 

  23. R.A. Nelson, The determination of moisture transitions in cellulosic materials using differential scanning calorimetry. J. Appl. Polym. Sci. 21(3), 645–654 (1977)

    Article  CAS  Google Scholar 

  24. J.E. Stone, A.M. Scallan, A structural model for the cell wall of water-swollen wood pulp fibres based on their accessibility to macromolecules. Cellul. Chem. Technol. 2, 343–358 (1968)

    CAS  Google Scholar 

  25. K. Fischer, A new method for the analytical determination of the water content of liquids and solids. Angew. Chem. 48(394), 24 (1935)

    Google Scholar 

  26. K. Schöffski, New Karl Fischer reagents for the water determination in food. Food Control 12(7), 427–429 (2001)

    Article  Google Scholar 

  27. D. Reid, Water determination in food, in Encyclopedia of Analytical Chemistry (2006)

    Google Scholar 

  28. M. Mathlouthi, Water content, water activity, water structure and the stability of foodstuffs. Food Control 12(7), 409–417 (2001)

    Article  Google Scholar 

  29. T. Okabe, M.T. Huang, S. Okamura, A new method for the measurement of grain moisture content by the use of microwaves. J. Agric. Eng. Res. 18(1), 59–66 (1973)

    Article  Google Scholar 

  30. M.F. Froix, R. Nelson, The interaction of water with cellulose from nuclear magnetic resonance relaxation times. Macromolecules 8(6), 726–730 (1975)

    Article  CAS  Google Scholar 

  31. E.L. Andronikashvili, G.M. Mrevlishvili, V.M. Sokhadze, K.A. Kvavadze, Thermal properties of collagen in helical and random coiled states in the temperature range from 4° to 300° K. Biopolymers 15(10), 1991–2004 (1976)

    Article  CAS  Google Scholar 

  32. J.M. Preston, G.P. Tawde, 10—Freezing point depression in assemblages of moist fibres. J. Text. Inst. Trans. 47(3), T154–T165 (1956)

    Article  CAS  Google Scholar 

  33. S. Nomura, A. Hiltner, J.B. Lando, E. Baer, Interaction of water with native collagen. Biopolymers 16(2), 231–246 (1977)

    Article  CAS  PubMed  Google Scholar 

  34. K. Nakamura, T. Hatakeyama, H. Hatakeyama, Studies on bound water of cellulose by differential scanning calorimetry. Text. Res. J. 51(9), 607–613 (1981)

    Article  CAS  Google Scholar 

  35. M.U.H. Joardder, R.J. Brown, C. Kumar, M.A. Karim, Effect of cell wall properties on porosity and shrinkage of dried apple. Int. J. Food Prop. 18(10), 2327–2337 (2015)

    Article  Google Scholar 

  36. M.I.H. Khan, M.A. Karim, Cellular water distribution, transport, and its investigation methods for plant-based food material. Food Res. Int. 99(Pt 1), 1–14 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. C. Reh, S.N. Bhat, S. Berrut, Determination of water content in powdered milk. Food Chem. 86(3), 457–464 (2004)

    Article  CAS  Google Scholar 

  38. J. Vogl, M. Ostermann, On the measurement of the moisture content in different matrix materials. Accred. Qual. Assur. 11(7), 356–362 (2006)

    Article  CAS  Google Scholar 

  39. M.M. Rahman, M.U.H. Joardder, A. Karim, Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosyst. Eng. 169, 126–138 (2018)

    Article  Google Scholar 

  40. E. Tsotsas, A.S. Mujumdar, Modern Drying Technology, Volume 3: Product Quality and Formulation, vol 1 (Wiley, Hoboken, 2011)

    Google Scholar 

  41. J.Y. Ahn, D.Y. Kil, C. Kong, B.G. Kim, Comparison of oven-drying methods for determination of moisture content in feed ingredients. Asian-Australas. J. Anim. Sci. 27(11), 1615 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh, W.L. Nowinski, Medical image segmentation using k-means clustering and improved watershed algorithm, in 2006 IEEE Southwest Symposium on Image Analysis and Interpretation (2006), pp. 61–65

    Google Scholar 

  43. A. Léonard, S. Blacher, P. Marchot, J. Pirard, M. Crine, Moisture profiles determination during convective drying using X-ray microtomography. Can. J. Chem. Eng. 83(1), 127–131 (2005)

    Article  Google Scholar 

  44. M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Experimental investigation of bound and free water transport process during drying of hygroscopic food material. Int. J. Therm. Sci. 117, 266–273 (2017)

    Article  Google Scholar 

  45. M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. Technol. 38, 252–261 (2016)

    Article  CAS  Google Scholar 

  46. R. Bottom, Thermogravimetric analysis. Princ. Appl. Therm. Anal. 3, 87–118 (2008)

    Google Scholar 

  47. J. Biscarat, C. Charmette, J. Sanchez, C. Pochat-Bohatier, Preparation of dense gelatin membranes by combining temperature induced gelation and dry-casting. J. Membr. Sci. 473, 45–53 (2015)

    Article  CAS  Google Scholar 

  48. H.C. Lukaski, P.E. Johnson, W.W. Bolonchuk, G.I. Lykken, Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 41(4), 810–817 (1985)

    Article  CAS  PubMed  Google Scholar 

  49. J.R. Matthie, P.O. Withers, M.D. Van Loan, P.L. Mayclin, Development of a commercial complex bio-impedance spectroscopic (CBIS) system for determining intracellular water (ICW) and extracellular water (ECW) volumes, in Proceedings of 8th International Conference on Electrical Bio-impedance (1992), pp. 203–205

    Google Scholar 

  50. M.I.N. Zhang, D.G. Stout, J.H.M. Willison, Electrical impedance analysis in plant tissues3. J. Exp. Bot. 41(3), 371–380 (1990)

    Article  Google Scholar 

  51. P. Dejmek, O. Miyawaki, Relationship between the electrical and rheological properties of potato tuber tissue after various forms of processing. Biosci. Biotechnol. Biochem. 66(6), 1218–1223 (2002)

    Article  CAS  PubMed  Google Scholar 

  52. L. Wu, Y. Ogawa, A. Tagawa, Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. J. Food Eng. 87(2), 274–280 (2008)

    Article  Google Scholar 

  53. K.S. Cole, Membranes, ions and impulses: a chapter of classical biophysics, vol 5 (University of California Press, Berkeley, 1972)

    Google Scholar 

  54. T. Hanai, Electric properties of emulsions. Emuls. Sci., 353–478 (1968)

    Google Scholar 

  55. A. De Lorenzo, A. Andreoli, J. Matthie, P. Withers, Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J. Appl. Physiol. 82(5), 1542–1558 (1997)

    Article  PubMed  Google Scholar 

  56. M. Zhang, J. Tang, A.S. Mujumdar, S. Wang, Trends in microwave-related drying of fruits and vegetables. Trends Food Sci. Technol. 17(10), 524–534 (2006)

    Article  CAS  Google Scholar 

  57. J. Jiang, L. Dang, C. Yuensin, H. Tan, B. Pan, H. Wei, Simulation of microwave thin layer drying process by a new theoretical model. Chem. Eng. Sci. 162, 69–76 (2017)

    Article  CAS  Google Scholar 

  58. M.A. Ruiz-Cabrera, P. Gou, L. Foucat, J.P. Renou, J.D. Daudin, Water transfer analysis in pork meat supported by NMR imaging. Meat Sci. 67(1), 169–178 (2004)

    Article  CAS  PubMed  Google Scholar 

  59. R.R. Ruan, P.L. Chen, Water in foods and biological materials (CRC Press, Boca Raton, 1997)

    Google Scholar 

  60. W.J. Chen, X.Y. Lin, R.S. Ruan, C.Y. He, R.B. Zhu, Y.H. Liu, Study on quickly and non-destructive estimate the moisture content of food using NMR. Food Res. Dev. 27(4), 125–127 (2006)

    Google Scholar 

  61. R.N.M. Pitombo, G.A.M.R. Lima, Nuclear magnetic resonance and water activity in measuring the water mobility in Pintado (Pseudoplatystoma corruscans) fish. J. Food Eng. 58(1), 59–66 (2003)

    Article  Google Scholar 

  62. M.J. McCarthy, Y. J. Choi, Recent advances in nondestructive testing with nuclear magnetic resonance, in Nondestructive Testing of Food Quality (2008), pp. 211–236

    Google Scholar 

  63. R. Hinrichs, J. Götz, M. Noll, A. Wolfschoon, H. Eibel, H. Weisser, Characterisation of the water-holding capacity of fresh cheese samples by means of low resolution nuclear magnetic resonance. Food Res. Int. 37(7), 667–676 (2004)

    Article  Google Scholar 

  64. P. Cornillon, L.C. Salim, Characterization of water mobility and distribution in low-and intermediate-moisture food systems. Magn. Reson. Imaging 18(3), 335–341 (2000)

    Article  CAS  PubMed  Google Scholar 

  65. X. Zhang, S. Zhu, J. Huang, G. Xu, J. Xu, H. Li, Analysis on internal moisture changes of carrot slices during drying process using low-field NMR. Trans. Chin. Soc. Agric. Eng. 28(22), 282–287 (2012)

    Google Scholar 

  66. U. Tylewicz et al., Effect of pulsed electric field treatment on water distribution of freeze-dried apple tissue evaluated with DSC and TD-NMR techniques. Innov. Food Sci. Emerg. Technol. 37, 352–358 (2016)

    Article  CAS  Google Scholar 

  67. P.F. Faure, S. Caré, J. Magat, T. Chaussadent, Drying effect on cement paste porosity at early age observed by NMR methods. Constr. Build. Mater. 29, 496–503 (2012)

    Article  Google Scholar 

  68. B. Li, Q. Yin, L. Yin, K. Zhang, H. Chen, Q. Han, Studies on characteristics and mechanism of hot air-microwave fluidized drying of lentinusedodes. J. Chin. Inst. Food Sci. Technol. 15(5), 134–139 (2015)

    Google Scholar 

  69. J. Xu, G. Xu, X. Zhang, Z. Gu, S. Zhang, H. Li, Moisture transport in carrot during hot air drying using magnetic resonance imaging. Trans. Chin. Soc. Agric. Eng. 29(12), 271–276 (2013)

    Google Scholar 

  70. W. Lv, M. Zhang, Y. Wang, B. Adhikari, Online measurement of moisture content, moisture distribution, and state of water in corn kernels during microwave vacuum drying using novel smart NMR/MRI detection system. Dry. Technol., 1–11 (2018)

    Google Scholar 

  71. X. Jin et al., Anomalies in moisture transport during broccoli drying monitored by MRI? Faraday Discuss. 158(1), 65–75 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. Y. Wang, M. Zhang, A.S. Mujumdar, K.J. Mothibe, S.M.R. Azam, Effect of blanching on microwave freeze drying of stem lettuce cubes in a circular conduit drying chamber. J. Food Eng. 113(2), 177–185 (2012)

    Article  Google Scholar 

  73. H.C. Bertram, A.H. Karlsson, H.J. Andersen, The significance of cooling rate on water dynamics in porcine muscle from heterozygote carriers and non-carriers of the halothane gene—a low-field NMR relaxation study. Meat Sci. 65(4), 1281–1291 (2003)

    Article  CAS  PubMed  Google Scholar 

  74. J. Goetz, P. Koehler, Study of the thermal denaturation of selected proteins of whey and egg by low resolution NMR. LWT-Food Sci. Technol. 38(5), 501–512 (2005)

    Article  CAS  Google Scholar 

  75. X. Wang, K. Gao, Q. Chen, J. Bi, X. Wu, J. Yi, Water diffusion characteristics of apple slices during short and medium-wave infrared drying. Trans. Chin. Soc. Agric. Eng. 31(12), 275–281 (2015)

    CAS  Google Scholar 

  76. H. Jiang, M. Zhang, A.S. Mujumdar, Physico-chemical changes during different stages of MFD/FD banana chips. J. Food Eng. 101(2), 140–145 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joardder, M.U.H., Mourshed, M., Hasan Masud, M. (2019). Bound Water Measurement Techniques. In: State of Bound Water: Measurement and Significance in Food Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-99888-6_4

Download citation

Publish with us

Policies and ethics