Bound Water Measurement Techniques

  • Mohammad U. H. Joardder
  • Monjur Mourshed
  • Mahadi Hasan Masud


Heterogeneous, amorphous, hygroscopic and porous properties of food materials make it complex in nature. Water is not uniformly distributed in food material. Bound water shows different characteristics in different ways. Consequently, there is no direct method reported in literature for calculating the bound water. However, several indirect approaches based on the distinct features of bound water are available in literature. In this chapter a comprehensive review on the available methods including DSC, Bound water estimation from SEM image, Dilatometry, TGA, NMR, BIA and CT scan to investigate the moisture distribution has been done. Moreover, the characterization of bound water in different approaches has also comprehensively discussed. An enhanced understanding of the measurement technique of different types of water in the food materials is vital to optimize the processing condition and eventually to achieve high-quality food product.


Water Boundary Food Materials Bioelectrical Impedance Analysis (BIA) Moisture contentMoisture Content Cell Wall Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Heertje, Structure and function of food products: a review. Food Struct. 12(3), 7 (1993)Google Scholar
  2. 2.
    J.M. Aguilera, D.W. Stanley, Microstructural Principles of Food Processing and Engineering (Springer Science & Business Media, Berlin, 1999)Google Scholar
  3. 3.
    J. Parada, J.M. Aguilera, Food microstructure affects the bioavailability of several nutrients. J. Food Sci. 72(2), R21–R32 (2007)PubMedCrossRefGoogle Scholar
  4. 4.
    M.U.H. Joardder, C. Kumar, M.A. Karim, Food structure: its formation and relationships with other properties. Crit. Rev. Food Sci. Nutr. 57(6), 1190–1205 (2017)CrossRefGoogle Scholar
  5. 5.
    E. Baer, A. Hiltner, J.X. Li, S. Bazhenov, Hierarchical Structure in Polymeric Solid and Its Influence on Properties (Case Western Reserve University Cleveland Ohio Department of Macromolecular Science, Cleveland, 1992)Google Scholar
  6. 6.
    R.J. Redgwell, E. MacRae, I. Hallett, M. Fischer, J. Perry, R. Harker, In vivo and in vitro swelling of cell walls during fruit ripening. Planta 203(2), 162–173 (1997)CrossRefGoogle Scholar
  7. 7.
    R.N. Zúñiga, J.M. Aguilera, Aerated food gels: fabrication and potential applications. Trends Food Sci. Technol. 19(4), 176–187 (2008)CrossRefGoogle Scholar
  8. 8.
    J.M. Aguilera, P.J. Lillford, Food Materials Science: Principles and Practice (Springer Science & Business Media, Berlin, 2007)Google Scholar
  9. 9.
    M.C. Alamar, E. Vanstreels, M.L. Oey, E. Moltó, B.M. Nicolaï, Micromechanical behaviour of apple tissue in tensile and compression tests: storage conditions and cultivar effect. J. Food Eng. 86(3), 324–333 (2008)CrossRefGoogle Scholar
  10. 10.
    A.M. Rojas, M. Delbon, A.G. Marangoni, L.N. Gerschenson, Contribution of cellular structure to the large and small deformation rheological behavior of kiwifruit. J. Food Sci. 67(6), 2143–2148 (2002)CrossRefGoogle Scholar
  11. 11.
    J.F.V Vincent, The composite structure of biological tissue used for food, in Food Materials Science (Springer, Berlin, 2008), pp. 11–20Google Scholar
  12. 12.
    M.U.H. Joardder, A. Karim, C. Kumar, R.J. Brown, Effect of cell wall properties of plant tissue on porosity and shrinkage of dried apple, in Proceedings of the 2014 International Conference on Food Properties (ICFP2014) (2014)Google Scholar
  13. 13.
    M.U.H. Joardder, A. Karim, C. Kumar, R.J. Brown, Porosity: Establishing the Relationship between Drying Parameters and Dried Food Quality (Springer International Publishing, Basel, 2015)Google Scholar
  14. 14.
    M.U.H. Joardder, M.A. Karim, C. Kumar, Better understanding of food material on the basis of water distribution using thermogravimetric analysis, in International Conference on Mechanical, Industrial and Materials Engineering (ICMIME2013), Rajshahi, Bangladesh (2013)Google Scholar
  15. 15.
    A. Halder, A.K. Datta, R.M. Spanswick, Water transport in cellular tissues during thermal processing. AICHE J. 57(9), 2574–2588 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Torreggiani, Osmotic dehydration in fruit and vegetable processing. Food Res. Int. 26(1), 59–68 (1993)CrossRefGoogle Scholar
  17. 17.
    H.-D. Isengard, Water – A Very Common and Yet a Particular Substance (Elsevier, New York, 2001)CrossRefGoogle Scholar
  18. 18.
    H.-D. Isengard, Water content, one of the most important properties of food. Food Control 12(7), 395–400 (2001)CrossRefGoogle Scholar
  19. 19.
    H.-D. Isengard, J.-M. Färber, ‘Hidden parameters’ of infrared drying for determining low water contents in instant powders. Talanta 50(2), 239–246 (1999)PubMedCrossRefGoogle Scholar
  20. 20.
    J.E. Ayer, Determination of primary adsorbed water in cotton fibers by drying techniques. J. Polym. Sci. Part A Polym. Chem. 21(99), 455–462 (1956)Google Scholar
  21. 21.
    H. Hatakeyama, K. Nakamura, T. Hatakeyama, Studies on factors affecting the molecular motion of lignin and lignin-related polystyrene derivatives. Trans. Pulp. Pap. Can. 81, 105–110 (1980)Google Scholar
  22. 22.
    D.A.I. Goring, The effect of cellulose on the structure of water: view 1, in Fibre Water Interactions in Paper-Making, vol. 2 (1978)Google Scholar
  23. 23.
    R.A. Nelson, The determination of moisture transitions in cellulosic materials using differential scanning calorimetry. J. Appl. Polym. Sci. 21(3), 645–654 (1977)CrossRefGoogle Scholar
  24. 24.
    J.E. Stone, A.M. Scallan, A structural model for the cell wall of water-swollen wood pulp fibres based on their accessibility to macromolecules. Cellul. Chem. Technol. 2, 343–358 (1968)Google Scholar
  25. 25.
    K. Fischer, A new method for the analytical determination of the water content of liquids and solids. Angew. Chem. 48(394), 24 (1935)Google Scholar
  26. 26.
    K. Schöffski, New Karl Fischer reagents for the water determination in food. Food Control 12(7), 427–429 (2001)CrossRefGoogle Scholar
  27. 27.
    D. Reid, Water determination in food, in Encyclopedia of Analytical Chemistry (2006)Google Scholar
  28. 28.
    M. Mathlouthi, Water content, water activity, water structure and the stability of foodstuffs. Food Control 12(7), 409–417 (2001)CrossRefGoogle Scholar
  29. 29.
    T. Okabe, M.T. Huang, S. Okamura, A new method for the measurement of grain moisture content by the use of microwaves. J. Agric. Eng. Res. 18(1), 59–66 (1973)CrossRefGoogle Scholar
  30. 30.
    M.F. Froix, R. Nelson, The interaction of water with cellulose from nuclear magnetic resonance relaxation times. Macromolecules 8(6), 726–730 (1975)CrossRefGoogle Scholar
  31. 31.
    E.L. Andronikashvili, G.M. Mrevlishvili, V.M. Sokhadze, K.A. Kvavadze, Thermal properties of collagen in helical and random coiled states in the temperature range from 4° to 300° K. Biopolymers 15(10), 1991–2004 (1976)CrossRefGoogle Scholar
  32. 32.
    J.M. Preston, G.P. Tawde, 10—Freezing point depression in assemblages of moist fibres. J. Text. Inst. Trans. 47(3), T154–T165 (1956)CrossRefGoogle Scholar
  33. 33.
    S. Nomura, A. Hiltner, J.B. Lando, E. Baer, Interaction of water with native collagen. Biopolymers 16(2), 231–246 (1977)CrossRefGoogle Scholar
  34. 34.
    K. Nakamura, T. Hatakeyama, H. Hatakeyama, Studies on bound water of cellulose by differential scanning calorimetry. Text. Res. J. 51(9), 607–613 (1981)CrossRefGoogle Scholar
  35. 35.
    M.U.H. Joardder, R.J. Brown, C. Kumar, M.A. Karim, Effect of cell wall properties on porosity and shrinkage of dried apple. Int. J. Food Prop. 18(10), 2327–2337 (2015)CrossRefGoogle Scholar
  36. 36.
    M.I.H. Khan, M.A. Karim, Cellular water distribution, transport, and its investigation methods for plant-based food material. Food Res. Int. 99(Pt 1), 1–14 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    C. Reh, S.N. Bhat, S. Berrut, Determination of water content in powdered milk. Food Chem. 86(3), 457–464 (2004)CrossRefGoogle Scholar
  38. 38.
    J. Vogl, M. Ostermann, On the measurement of the moisture content in different matrix materials. Accred. Qual. Assur. 11(7), 356–362 (2006)CrossRefGoogle Scholar
  39. 39.
    M.M. Rahman, M.U.H. Joardder, A. Karim, Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosyst. Eng. 169, 126–138 (2018)CrossRefGoogle Scholar
  40. 40.
    E. Tsotsas, A.S. Mujumdar, Modern Drying Technology, Volume 3: Product Quality and Formulation, vol 1 (Wiley, Hoboken, 2011)Google Scholar
  41. 41.
    J.Y. Ahn, D.Y. Kil, C. Kong, B.G. Kim, Comparison of oven-drying methods for determination of moisture content in feed ingredients. Asian-Australas. J. Anim. Sci. 27(11), 1615 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh, W.L. Nowinski, Medical image segmentation using k-means clustering and improved watershed algorithm, in 2006 IEEE Southwest Symposium on Image Analysis and Interpretation (2006), pp. 61–65Google Scholar
  43. 43.
    A. Léonard, S. Blacher, P. Marchot, J. Pirard, M. Crine, Moisture profiles determination during convective drying using X-ray microtomography. Can. J. Chem. Eng. 83(1), 127–131 (2005)CrossRefGoogle Scholar
  44. 44.
    M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Experimental investigation of bound and free water transport process during drying of hygroscopic food material. Int. J. Therm. Sci. 117, 266–273 (2017)CrossRefGoogle Scholar
  45. 45.
    M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. Technol. 38, 252–261 (2016)CrossRefGoogle Scholar
  46. 46.
    R. Bottom, Thermogravimetric analysis. Princ. Appl. Therm. Anal. 3, 87–118 (2008)Google Scholar
  47. 47.
    J. Biscarat, C. Charmette, J. Sanchez, C. Pochat-Bohatier, Preparation of dense gelatin membranes by combining temperature induced gelation and dry-casting. J. Membr. Sci. 473, 45–53 (2015)CrossRefGoogle Scholar
  48. 48.
    H.C. Lukaski, P.E. Johnson, W.W. Bolonchuk, G.I. Lykken, Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 41(4), 810–817 (1985)PubMedCrossRefGoogle Scholar
  49. 49.
    J.R. Matthie, P.O. Withers, M.D. Van Loan, P.L. Mayclin, Development of a commercial complex bio-impedance spectroscopic (CBIS) system for determining intracellular water (ICW) and extracellular water (ECW) volumes, in Proceedings of 8th International Conference on Electrical Bio-impedance (1992), pp. 203–205Google Scholar
  50. 50.
    M.I.N. Zhang, D.G. Stout, J.H.M. Willison, Electrical impedance analysis in plant tissues3. J. Exp. Bot. 41(3), 371–380 (1990)CrossRefGoogle Scholar
  51. 51.
    P. Dejmek, O. Miyawaki, Relationship between the electrical and rheological properties of potato tuber tissue after various forms of processing. Biosci. Biotechnol. Biochem. 66(6), 1218–1223 (2002)CrossRefGoogle Scholar
  52. 52.
    L. Wu, Y. Ogawa, A. Tagawa, Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. J. Food Eng. 87(2), 274–280 (2008)CrossRefGoogle Scholar
  53. 53.
    K.S. Cole, Membranes, ions and impulses: a chapter of classical biophysics, vol 5 (University of California Press, Berkeley, 1972)Google Scholar
  54. 54.
    T. Hanai, Electric properties of emulsions. Emuls. Sci., 353–478 (1968)Google Scholar
  55. 55.
    A. De Lorenzo, A. Andreoli, J. Matthie, P. Withers, Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J. Appl. Physiol. 82(5), 1542–1558 (1997)PubMedCrossRefGoogle Scholar
  56. 56.
    M. Zhang, J. Tang, A.S. Mujumdar, S. Wang, Trends in microwave-related drying of fruits and vegetables. Trends Food Sci. Technol. 17(10), 524–534 (2006)CrossRefGoogle Scholar
  57. 57.
    J. Jiang, L. Dang, C. Yuensin, H. Tan, B. Pan, H. Wei, Simulation of microwave thin layer drying process by a new theoretical model. Chem. Eng. Sci. 162, 69–76 (2017)CrossRefGoogle Scholar
  58. 58.
    M.A. Ruiz-Cabrera, P. Gou, L. Foucat, J.P. Renou, J.D. Daudin, Water transfer analysis in pork meat supported by NMR imaging. Meat Sci. 67(1), 169–178 (2004)PubMedCrossRefGoogle Scholar
  59. 59.
    R.R. Ruan, P.L. Chen, Water in foods and biological materials (CRC Press, Boca Raton, 1997)Google Scholar
  60. 60.
    W.J. Chen, X.Y. Lin, R.S. Ruan, C.Y. He, R.B. Zhu, Y.H. Liu, Study on quickly and non-destructive estimate the moisture content of food using NMR. Food Res. Dev. 27(4), 125–127 (2006)Google Scholar
  61. 61.
    R.N.M. Pitombo, G.A.M.R. Lima, Nuclear magnetic resonance and water activity in measuring the water mobility in Pintado (Pseudoplatystoma corruscans) fish. J. Food Eng. 58(1), 59–66 (2003)CrossRefGoogle Scholar
  62. 62.
    M.J. McCarthy, Y. J. Choi, Recent advances in nondestructive testing with nuclear magnetic resonance, in Nondestructive Testing of Food Quality (2008), pp. 211–236Google Scholar
  63. 63.
    R. Hinrichs, J. Götz, M. Noll, A. Wolfschoon, H. Eibel, H. Weisser, Characterisation of the water-holding capacity of fresh cheese samples by means of low resolution nuclear magnetic resonance. Food Res. Int. 37(7), 667–676 (2004)CrossRefGoogle Scholar
  64. 64.
    P. Cornillon, L.C. Salim, Characterization of water mobility and distribution in low-and intermediate-moisture food systems. Magn. Reson. Imaging 18(3), 335–341 (2000)PubMedCrossRefGoogle Scholar
  65. 65.
    X. Zhang, S. Zhu, J. Huang, G. Xu, J. Xu, H. Li, Analysis on internal moisture changes of carrot slices during drying process using low-field NMR. Trans. Chin. Soc. Agric. Eng. 28(22), 282–287 (2012)Google Scholar
  66. 66.
    U. Tylewicz et al., Effect of pulsed electric field treatment on water distribution of freeze-dried apple tissue evaluated with DSC and TD-NMR techniques. Innov. Food Sci. Emerg. Technol. 37, 352–358 (2016)CrossRefGoogle Scholar
  67. 67.
    P.F. Faure, S. Caré, J. Magat, T. Chaussadent, Drying effect on cement paste porosity at early age observed by NMR methods. Constr. Build. Mater. 29, 496–503 (2012)CrossRefGoogle Scholar
  68. 68.
    B. Li, Q. Yin, L. Yin, K. Zhang, H. Chen, Q. Han, Studies on characteristics and mechanism of hot air-microwave fluidized drying of lentinusedodes. J. Chin. Inst. Food Sci. Technol. 15(5), 134–139 (2015)Google Scholar
  69. 69.
    J. Xu, G. Xu, X. Zhang, Z. Gu, S. Zhang, H. Li, Moisture transport in carrot during hot air drying using magnetic resonance imaging. Trans. Chin. Soc. Agric. Eng. 29(12), 271–276 (2013)Google Scholar
  70. 70.
    W. Lv, M. Zhang, Y. Wang, B. Adhikari, Online measurement of moisture content, moisture distribution, and state of water in corn kernels during microwave vacuum drying using novel smart NMR/MRI detection system. Dry. Technol., 1–11 (2018)Google Scholar
  71. 71.
    X. Jin et al., Anomalies in moisture transport during broccoli drying monitored by MRI? Faraday Discuss. 158(1), 65–75 (2012)PubMedCrossRefGoogle Scholar
  72. 72.
    Y. Wang, M. Zhang, A.S. Mujumdar, K.J. Mothibe, S.M.R. Azam, Effect of blanching on microwave freeze drying of stem lettuce cubes in a circular conduit drying chamber. J. Food Eng. 113(2), 177–185 (2012)CrossRefGoogle Scholar
  73. 73.
    H.C. Bertram, A.H. Karlsson, H.J. Andersen, The significance of cooling rate on water dynamics in porcine muscle from heterozygote carriers and non-carriers of the halothane gene—a low-field NMR relaxation study. Meat Sci. 65(4), 1281–1291 (2003)PubMedCrossRefGoogle Scholar
  74. 74.
    J. Goetz, P. Koehler, Study of the thermal denaturation of selected proteins of whey and egg by low resolution NMR. LWT-Food Sci. Technol. 38(5), 501–512 (2005)CrossRefGoogle Scholar
  75. 75.
    X. Wang, K. Gao, Q. Chen, J. Bi, X. Wu, J. Yi, Water diffusion characteristics of apple slices during short and medium-wave infrared drying. Trans. Chin. Soc. Agric. Eng. 31(12), 275–281 (2015)Google Scholar
  76. 76.
    H. Jiang, M. Zhang, A.S. Mujumdar, Physico-chemical changes during different stages of MFD/FD banana chips. J. Food Eng. 101(2), 140–145 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad U. H. Joardder
    • 1
  • Monjur Mourshed
    • 1
  • Mahadi Hasan Masud
    • 1
  1. 1.Department of Mechanical EngineeringRajshahi University of EngineeringRajshahiBangladesh

Personalised recommendations