Water in Foods

  • Mohammad U. H. Joardder
  • Monjur Mourshed
  • Mahadi Hasan Masud


Water is an indispensable components of food materials ranging very minimal to severely as high as 80–90% in weight. The amount of water is not consistent throughout the food materials due to its diverse degree of bonding with other components of food materials. There are many terminology available in relation to describing water in food materials. Sometimes these terminologies are interchangeable in meaning in a certain context and differ in some other context. An extensive discussion on the common terminologies regarding the presence of water in food materials has been presented in this chapter. Following this, classification of water in food materials has been discussed in details.


Food Materials Moisture contentMoisture Content Water activityWater Activity Moisture Sorption Isotherms Monolayer Moisture Content (MMC) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Ergun, R. Lietha, R.W. Hartel, Moisture and shelf life in sugar confections. Crit. Rev. Food Sci. Nutr. 50(2), 162–192 (2010)PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Pomeranz, Functional Properties of Food Components (Academic, New York, 1991)Google Scholar
  3. 3.
    E. Maltini, D. Torreggiani, E. Venir, G. Bertolo, Water activity and the preservation of plant foods. Food Chem. 82, 79–86 (2003)CrossRefGoogle Scholar
  4. 4.
    J.W. Pyper, The determination of moisture in solids: a selected review. Anal. Chim. Acta 170, 159–175 (1985)CrossRefGoogle Scholar
  5. 5.
    M.U.H. Joardder, A. Karim, C. Kumar, R. J. Brown, Effect of cell wall properties of plant tissue on porosity and shrinkage of dried apple, in Proceedings of the 2014 International Conference on Food Properties (ICFP2014) (2014)Google Scholar
  6. 6.
    N. Pan, Z. Sun, Essentials of psychrometry and capillary hydrostatics, in Thermal and Moisture Transport in Fibrous Materials (Woodhead Publishing Cambridge, 2006), pp. 102–135Google Scholar
  7. 7.
    M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. Technol. 38, 252–261 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Halder, A. Dhall, A.K. Datta, Modeling transport in porous media with phase change: applications to food processing. J. Heat Transf. 133(3), 31010 (2011)CrossRefGoogle Scholar
  9. 9.
    P.S. Taoukis, M. Richardson, Chapter 11. Principles of intermediate-moisture foods and related technology, in Water Activity in Foods (Blackwell, Iowa, 2008), p. 273Google Scholar
  10. 10.
    W.D. Bascom, R.Y. Ting, R.J. Moulton, C.K. Riew, A.R. Siebert, The fracture of an epoxy polymer containing elastomeric modifiers. J. Mater. Sci. 16(10), 2657–2664 (1981)CrossRefGoogle Scholar
  11. 11.
    A.J. Fontana Jr., S.J. Schmidt, T.P. Labuza, Water Activity in Foods: Fundamentals and Applications, vol 13 (Wiley, Hoboken, 2008)Google Scholar
  12. 12.
    G. Barbosa-Canovas, J. Fernandez-Molina, S. Alzamora, M. Tapia, A. Lopez-Malo, J.C. Welti, Technical Manual FAO Agricultural Services Bulletin 149 (Food and Agriculture Organization of The United Nations, Rome, 2003), p. 3Google Scholar
  13. 13.
    E. Sandulache, Water activity concept and its role in food preservation. Tech. Univ. Mold., 42–43 (2012)Google Scholar
  14. 14.
    A.S. Mujumdar, S. Devahastin, Mujumdar’s Practical Guide to Industrial Drying (Exergex Corporation, Watertown, 2000)Google Scholar
  15. 15.
    M.A.M. Pedro, J. Telis-Romero, V.R.N. Telis, Effect of drying method on the adsorption isotherms and isosteric heat of passion fruit pulp powder. Food Sci. Technol. 30(4), 993–1000 (2010)CrossRefGoogle Scholar
  16. 16.
    L.A. Ramallo, R.H. Mascheroni, Quality evaluation of pineapple fruit during drying process. Food Bioprod. Process. 90(2), 275–283 (2012)CrossRefGoogle Scholar
  17. 17.
    F. Rezaei, J.S. Vandergheynst, Critical moisture content for microbial growth in dried food-processing residues. J. Sci. Food Agric. 90(12), 2000–2005 (2010)PubMedGoogle Scholar
  18. 18.
    C.S. Chen, W.H. Johnson, Kinetics of moisture movement in hygroscopic materials. I. Theoretical considerations of drying phenomena. Trans. ASAE 12(1), 109–113 (1969)CrossRefGoogle Scholar
  19. 19.
    H.K. Leung, M.P. Steinberg, Water binding of food constituents as, determined by NMR, freezing, sorption and dehydration. J. Food Sci. 44(4), 1212–1216 (1979)CrossRefGoogle Scholar
  20. 20.
    J. Trouillet, J. Fagon, Y. Domart, J. Chastre, J. Pierre, C. Gibert, Use of granulated sugar in treatment of open mediastinitis after cardiac surgery. Lancet 326(8448), 180–184 (1985)CrossRefGoogle Scholar
  21. 21.
    R.J. Aguerre, C. Suarez, Diffusion of bound water in starchy materials: application to drying. J. Food Eng. 64, 389–395 (2004)CrossRefGoogle Scholar
  22. 22.
    Y.M. Chen et al., Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials 28(10), 1752–1760 (2007)PubMedCrossRefGoogle Scholar
  23. 23.
    L.M. Sun, F. Meunier, A detailed model for nonisothermal sorption in porous adsorbents. Chem. Eng. Sci. 42(7), 1585–1593 (1987)CrossRefGoogle Scholar
  24. 24.
    H.-D. Isengard, Water determination – scientific and economic dimensions. Food Chem. 106(4), 1393–1398 (2008)CrossRefGoogle Scholar
  25. 25.
    H.-D. Isengard, J.-M. Färber, “Hidden parameters” of infrared drying for determining low water contents in instant powders. Talanta 50(2), 239–246 (1999)PubMedCrossRefGoogle Scholar
  26. 26.
    A.M. Goula, T.D. Karapantsios, D.S. Achilias, K.G. Adamopoulos, Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J. Food Eng. 85, 73–83 (2008)CrossRefGoogle Scholar
  27. 27.
    S. Basu, U.S. Shivhare, A.S. Mujumdar, Models for sorption isotherms for foods: a review. Dry. Technol. 24(8), 917–930 (2006)CrossRefGoogle Scholar
  28. 28.
    A.H. Al-Muhtaseb, W.A.M. McMinn, T.R.A. Magee, Water sorption isotherms of starch powders: part 1: mathematical description of experimental data. J. Food Eng. 61(3), 297–307 (2004)CrossRefGoogle Scholar
  29. 29.
    K.B. Palipane, R.H. Driscoll, Moisture sorption characteristics of in-shell macadamia nuts. J. Food Eng. 18(1), 63–76 (1993)CrossRefGoogle Scholar
  30. 30.
    R.M. Myhara, S. Sablani, Unification of fruit water sorption isotherms using artificial neural networks. Dry. Technol. 19(8), 1543–1554 (2001)CrossRefGoogle Scholar
  31. 31.
    K.O. Falade, O.C. Aworh, Adsorption isotherms of osmo-oven dried African star apple (Chrysophyllum albidum) and African mango (Irvingia gabonensis) slices. Eur. Food Res. Technol. 218(3), 278–283 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Mathlouthi, Water content, water activity, water structure and the stability of foodstuffs. Food Control 12(7), 409–417 (2001)CrossRefGoogle Scholar
  33. 33.
    D.R. Heldman, D.B. Lund, C. Sabliov, Handbook of Food Engineering (CRC Press, Boca Raton, 2006)CrossRefGoogle Scholar
  34. 34.
    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRefGoogle Scholar
  35. 35.
    S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62(7), 1723–1732 (1940)CrossRefGoogle Scholar
  36. 36.
    M. Mathlouthi, B. Roge, Water vapour sorption isotherms and the caking of food powders. Food Chem. 82(1), 61–71 (2003)CrossRefGoogle Scholar
  37. 37.
    R.M. Syamaladevi, S.S. Sablani, J. Tang, J. Powers, B.G. Swanson, Water sorption and glass transition temperatures in red raspberry (Rubus idaeus). Thermochim. Acta 503, 90–96 (2010)CrossRefGoogle Scholar
  38. 38.
    A.S. Mujumdar, Principles, classification, and selection of dryers, in Handbook of Industrial Drying, 3rd edn. (CRC Press, Boca Raton, 2006)CrossRefGoogle Scholar
  39. 39.
    L.B. Rockland, Water activity and strage stability. Food Technol. 23, 1241–1251 (1969)Google Scholar
  40. 40.
    R. Ilker, A.S. Szczesniak, Structural and chemical bases for texture of plant foodstuffs. J. Texture Stud. 21(1), 1–36 (1990)CrossRefGoogle Scholar
  41. 41.
    R.M. Reeve, Relationships of histological structure to texture of fresh and processed fruits and vegetables. J. Texture Stud. 1(3), 247–284 (1970)PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    M.U.H. Joardder, M.A. Karim, C. Kumar, Better understanding of food material on the basis of water distribution using thermogravimetric analysis, in International Conference on Mechanical, Industrial and Materials Engineering (ICMIME2013), Rajshahi, Bangladesh (2013)Google Scholar
  43. 43.
    H. Salwin, The role of moisture in deteriorative reactions of dehydrated foods, in Freeze-Drying of Foods (1962), p. 58Google Scholar
  44. 44.
    L.B. Rockland, Water activity and storage stability. Food Technol. 23(10), 1241 (1969)Google Scholar
  45. 45.
    M.E. Katekawa, M.A. Silva, On the influence of glass transition on shrinkage in convective drying of fruits: a case study of banana drying. Dry. Technol. 25(10), 1659–1666 (2007)CrossRefGoogle Scholar
  46. 46.
    G. Moraga, N. Martınez-Navarrete, A. Chiralt, Water sorption isotherms and glass transition in strawberries: influence of pretreatment. J. Food Eng. 62(4), 315–321 (2004)CrossRefGoogle Scholar
  47. 47.
    G. Moraga, N. Martínez-Navarrete, A. Chiralt, Water sorption isotherms and phase transitions in kiwifruit. J. Food Eng. 72(2), 147–156 (2006)CrossRefGoogle Scholar
  48. 48.
    A. Lopez-Malo, E. Palou, J. Welti, P. Corte, A. Argaiz, Moisture sorption characteristics of blanched and osmotically treated apples and papayas. Dry. Technol. 15(3–4), 1173–1185 (1997)CrossRefGoogle Scholar
  49. 49.
    T.P. Labuza, Sorption phenomena in foods: theoretical and practical aspects, in Theory, Determination and Control of Physical Properties of Food Materials (Springer, Berlin, 1975), pp. 197–219CrossRefGoogle Scholar
  50. 50.
    H.-D. Isengard, Water content, one of the most important properties of food. Food Control 12(7), 395–400 (2001)CrossRefGoogle Scholar
  51. 51.
    M.S. Rahman, State diagram of foods: its potential use in food processing and product stability. Trends Food Sci. Technol. 17(3), 129–141 (2006)CrossRefGoogle Scholar
  52. 52.
    H.A. Iglesias, J. Chirife, Correlation of BET monolayer moisture content in foods with temperature. Int. J. Food Sci. Technol. 19(4), 503–506 (1984)CrossRefGoogle Scholar
  53. 53.
    J. Welti-Chanes, E. Pérez, J.A. Guerrero-Beltrán, S.M. Alzamora, F. Vergara-Balderas, Chapter 13. Applications of water activity management in the food industry, in Water Activity in Foods (Blackwell, Iowa, 2008), p. 341Google Scholar
  54. 54.
    L. Godbillot, P. Dole, C. Joly, B. Rogé, M. Mathlouthi, Analysis of water binding in starch plasticized films. Food Chem. 96(3), 380–386 (2006)CrossRefGoogle Scholar
  55. 55.
    M. Caurie, A practical approach to water sorption isotherms and the basis for the determination of optimum moisture levels of dehydrated foods. Int. J. Food Sci. Technol. 6(1), 85–93 (1971)CrossRefGoogle Scholar
  56. 56.
    Y. Sato, S. Noguchi, Water sorption characteristics of dietary fibers. J. Home Econ. Japan 44(8), 625–631 (1993)Google Scholar
  57. 57.
    A.H. Yukinori Sato, Y. Wadab, Relationship between monolayer and multilayer water contents, and involvement in gelatinization of baked starch products. J. Food Eng. 96(2), 172–178 (2010)CrossRefGoogle Scholar
  58. 58.
    J. Wolfe, G. Bryant, K.L. Koster, What is’ unfreezable water’, how unfreezable is it and how much is there? CryoLetters 23(3), 157–166 (2002)PubMedGoogle Scholar
  59. 59.
    N. Aktas, Y. Tülek, H.Y. Gökalp, Determination of differences in free and bound water contents of beef muscle by DSC under various freezing conditions. J. Therm. Anal. 50(4), 617–624 (1997)CrossRefGoogle Scholar
  60. 60.
    R. Toledo, M.P. Steinberg, A.I. Nelson, Quantitative determination of bound water by NMR. J. Food Sci. 33(3), 315–317 (1968)CrossRefGoogle Scholar
  61. 61.
    J. Kuprianoff, Bound water in foods, in Fundamental Aspects of the Dehydration of Foodstuffs (1958), pp. 14–23Google Scholar
  62. 62.
    R.B. Duckworth, Differential thermal analysis of frozen food systems. I. The determination of unfreezable water. Int. J. Food Sci. Technol. 6(3), 317–327 (1971)CrossRefGoogle Scholar
  63. 63.
    E.G. Murakami, M.R. Okos, Calculation of initial freezing point, effective molecular weight and unfreezable water of food materials from composition and thermal conductivity data1. J. Food Process Eng. 19(3), 301–320 (1996)CrossRefGoogle Scholar
  64. 64.
    O.A. Plumb, G.A. Spolek, B.A. Olmstead, Heat and mass transfer in wood during drying. Int. J. Heat Mass Transf. 28(9), 1669–1678 (1985)CrossRefGoogle Scholar
  65. 65.
    D.M. Griffin, Water and microbial stress, in Advances in Microbial Ecology (Springer, Berlin, 1981), pp. 91–136CrossRefGoogle Scholar
  66. 66.
    Z. Liu, Z. Wu, X. Wang, J. Song, W. Wu, Numerical simulation and experimental study of deep bed corn drying based on water potential. Math. Probl. Eng. 2015, 13 (2015)Google Scholar
  67. 67.
    J.A. Robertson, F.D. de Monredon, P. Dysseler, F. Guillon, R. Amado, J.-F. Thibault, Hydration properties of dietary fibre and resistant starch: a European collaborative study. LWT-Food Sci. Technol. 33(2), 72–79 (2000)CrossRefGoogle Scholar
  68. 68.
    F. Figuerola, M.L. Hurtado, A.M. Estévez, I. Chiffelle, F. Asenjo, Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 91(3), 395–401 (2005)CrossRefGoogle Scholar
  69. 69.
    S. Vetter, H. Kunzek, Material properties of processed fruit and vegetables. II. Water hydration properties of cell wall materials from apples. Eur. Food Res. Technol. 214(1), 43–51 (2002)CrossRefGoogle Scholar
  70. 70.
    S.N. Heller, L.R. Hackler, Water-holding capacity of various sources of plant fiber. J. Food Sci. 42(4), 1137 (1977)CrossRefGoogle Scholar
  71. 71.
    M.U.H. Joardder, C. Kumar, M.A. Karim, Food structure: its formation and relationships with other properties. Crit. Rev. Food Sci. Nutr. 57(6), 1190–1205 (2017)PubMedCrossRefGoogle Scholar
  72. 72.
    H. Hatakeyama, T. Hatakeyama, Interaction between water and hydrophilic polymers. Thermochim. Acta 308(1–2), 3–22 (1998)CrossRefGoogle Scholar
  73. 73.
    I.C. Watt, Theory of water sorption by biological materials, in Physical Properties of Foods, ed. by R. Jowitt et al. (1983)Google Scholar
  74. 74.
    M. Caurie, The unimolecular character of the classical Brunauer, Emmett and Teller adsorption equation and moisture adsorption. Int. J. Food Sci. Technol. 40(3), 283–293 (2005)CrossRefGoogle Scholar
  75. 75.
    M. Tanaka, A. Mochizuki, Effect of water structure on blood compatibility—thermal analysis of water in poly (meth) acrylate. J. Biomed. Mater. Res. Part A 68(4), 684–695 (2004)CrossRefGoogle Scholar
  76. 76.
    T. Hatakeyama, H. Hatakeyama, Thermal Properties of Green Polymers and Biocomposites, vol 4 (Springer Science & Business Media, Berlin, 2006)Google Scholar
  77. 77.
    D.R. Briggs, Water relationships in colloids. II. J. Phys. Chem. 36(1), 367–386 (1932)CrossRefGoogle Scholar
  78. 78.
    H.T. Meryman, Freeze-drying, in Cryobiology, ed. by H.T. Meryman (Academic, London, 1966) pp. 609–663Google Scholar
  79. 79.
    L.C. Dickinson, P. Chinachoti, Mobility of “ unfreezable ” and “ freezable ” water in waxy corn starch by 2 H and 1 H NMR. J. Agric. Food Chem. 8561(96), 62–71 (1998)Google Scholar
  80. 80.
    A. Halder, A.K. Datta, R.M. Spanswick, Water transport in cellular tissues during thermal processing. AICHE J. 57(9), 2574–2588 (2011)CrossRefGoogle Scholar
  81. 81.
    M.U.H. Joardder, R.J. Brown, C. Kumar, M.A. Karim, Effect of cell wall properties on porosity and shrinkage of dried apple. Int. J. Food Prop. 18(10), 2327–2337 (2015)CrossRefGoogle Scholar
  82. 82.
    M.U.H. Joardder, A. Karim, C. Kumar, R.J. Brown, Porosity: Establishing the Relationship Between Drying Parameters and Dried Food Quality (Springer, Berlin, 2015)Google Scholar
  83. 83.
    L. Van Der Weerd, M.M.A.E. Claessens, C. Efde, H. Van As, Nuclear magnetic resonanceimaging of membrane permeability changes in plants during osmoticstress. Plant Cell Environ. 25(11), 1539–1549 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad U. H. Joardder
    • 1
  • Monjur Mourshed
    • 1
  • Mahadi Hasan Masud
    • 1
  1. 1.Department of Mechanical EngineeringRajshahi University of EngineeringRajshahiBangladesh

Personalised recommendations