Skip to main content

Abstract

Water is an indispensable components of food materials ranging very minimal to severely as high as 80–90% in weight. The amount of water is not consistent throughout the food materials due to its diverse degree of bonding with other components of food materials. There are many terminology available in relation to describing water in food materials. Sometimes these terminologies are interchangeable in meaning in a certain context and differ in some other context. An extensive discussion on the common terminologies regarding the presence of water in food materials has been presented in this chapter. Following this, classification of water in food materials has been discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Ergun, R. Lietha, R.W. Hartel, Moisture and shelf life in sugar confections. Crit. Rev. Food Sci. Nutr. 50(2), 162–192 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Y. Pomeranz, Functional Properties of Food Components (Academic, New York, 1991)

    Google Scholar 

  3. E. Maltini, D. Torreggiani, E. Venir, G. Bertolo, Water activity and the preservation of plant foods. Food Chem. 82, 79–86 (2003)

    Article  CAS  Google Scholar 

  4. J.W. Pyper, The determination of moisture in solids: a selected review. Anal. Chim. Acta 170, 159–175 (1985)

    Article  CAS  Google Scholar 

  5. M.U.H. Joardder, A. Karim, C. Kumar, R. J. Brown, Effect of cell wall properties of plant tissue on porosity and shrinkage of dried apple, in Proceedings of the 2014 International Conference on Food Properties (ICFP2014) (2014)

    Google Scholar 

  6. N. Pan, Z. Sun, Essentials of psychrometry and capillary hydrostatics, in Thermal and Moisture Transport in Fibrous Materials (Woodhead Publishing Cambridge, 2006), pp. 102–135

    Google Scholar 

  7. M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. Technol. 38, 252–261 (2016)

    Article  CAS  Google Scholar 

  8. A. Halder, A. Dhall, A.K. Datta, Modeling transport in porous media with phase change: applications to food processing. J. Heat Transf. 133(3), 31010 (2011)

    Article  Google Scholar 

  9. P.S. Taoukis, M. Richardson, Chapter 11. Principles of intermediate-moisture foods and related technology, in Water Activity in Foods (Blackwell, Iowa, 2008), p. 273

    Google Scholar 

  10. W.D. Bascom, R.Y. Ting, R.J. Moulton, C.K. Riew, A.R. Siebert, The fracture of an epoxy polymer containing elastomeric modifiers. J. Mater. Sci. 16(10), 2657–2664 (1981)

    Article  CAS  Google Scholar 

  11. A.J. Fontana Jr., S.J. Schmidt, T.P. Labuza, Water Activity in Foods: Fundamentals and Applications, vol 13 (Wiley, Hoboken, 2008)

    Google Scholar 

  12. G. Barbosa-Canovas, J. Fernandez-Molina, S. Alzamora, M. Tapia, A. Lopez-Malo, J.C. Welti, Technical Manual FAO Agricultural Services Bulletin 149 (Food and Agriculture Organization of The United Nations, Rome, 2003), p. 3

    Google Scholar 

  13. E. Sandulache, Water activity concept and its role in food preservation. Tech. Univ. Mold., 42–43 (2012)

    Google Scholar 

  14. A.S. Mujumdar, S. Devahastin, Mujumdar’s Practical Guide to Industrial Drying (Exergex Corporation, Watertown, 2000)

    Google Scholar 

  15. M.A.M. Pedro, J. Telis-Romero, V.R.N. Telis, Effect of drying method on the adsorption isotherms and isosteric heat of passion fruit pulp powder. Food Sci. Technol. 30(4), 993–1000 (2010)

    Article  Google Scholar 

  16. L.A. Ramallo, R.H. Mascheroni, Quality evaluation of pineapple fruit during drying process. Food Bioprod. Process. 90(2), 275–283 (2012)

    Article  CAS  Google Scholar 

  17. F. Rezaei, J.S. Vandergheynst, Critical moisture content for microbial growth in dried food-processing residues. J. Sci. Food Agric. 90(12), 2000–2005 (2010)

    CAS  PubMed  Google Scholar 

  18. C.S. Chen, W.H. Johnson, Kinetics of moisture movement in hygroscopic materials. I. Theoretical considerations of drying phenomena. Trans. ASAE 12(1), 109–113 (1969)

    Article  Google Scholar 

  19. H.K. Leung, M.P. Steinberg, Water binding of food constituents as, determined by NMR, freezing, sorption and dehydration. J. Food Sci. 44(4), 1212–1216 (1979)

    Article  CAS  Google Scholar 

  20. J. Trouillet, J. Fagon, Y. Domart, J. Chastre, J. Pierre, C. Gibert, Use of granulated sugar in treatment of open mediastinitis after cardiac surgery. Lancet 326(8448), 180–184 (1985)

    Article  Google Scholar 

  21. R.J. Aguerre, C. Suarez, Diffusion of bound water in starchy materials: application to drying. J. Food Eng. 64, 389–395 (2004)

    Article  Google Scholar 

  22. Y.M. Chen et al., Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials 28(10), 1752–1760 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. L.M. Sun, F. Meunier, A detailed model for nonisothermal sorption in porous adsorbents. Chem. Eng. Sci. 42(7), 1585–1593 (1987)

    Article  CAS  Google Scholar 

  24. H.-D. Isengard, Water determination – scientific and economic dimensions. Food Chem. 106(4), 1393–1398 (2008)

    Article  CAS  Google Scholar 

  25. H.-D. Isengard, J.-M. Färber, “Hidden parameters” of infrared drying for determining low water contents in instant powders. Talanta 50(2), 239–246 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. A.M. Goula, T.D. Karapantsios, D.S. Achilias, K.G. Adamopoulos, Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J. Food Eng. 85, 73–83 (2008)

    Article  Google Scholar 

  27. S. Basu, U.S. Shivhare, A.S. Mujumdar, Models for sorption isotherms for foods: a review. Dry. Technol. 24(8), 917–930 (2006)

    Article  Google Scholar 

  28. A.H. Al-Muhtaseb, W.A.M. McMinn, T.R.A. Magee, Water sorption isotherms of starch powders: part 1: mathematical description of experimental data. J. Food Eng. 61(3), 297–307 (2004)

    Article  Google Scholar 

  29. K.B. Palipane, R.H. Driscoll, Moisture sorption characteristics of in-shell macadamia nuts. J. Food Eng. 18(1), 63–76 (1993)

    Article  Google Scholar 

  30. R.M. Myhara, S. Sablani, Unification of fruit water sorption isotherms using artificial neural networks. Dry. Technol. 19(8), 1543–1554 (2001)

    Article  CAS  Google Scholar 

  31. K.O. Falade, O.C. Aworh, Adsorption isotherms of osmo-oven dried African star apple (Chrysophyllum albidum) and African mango (Irvingia gabonensis) slices. Eur. Food Res. Technol. 218(3), 278–283 (2004)

    Article  CAS  Google Scholar 

  32. M. Mathlouthi, Water content, water activity, water structure and the stability of foodstuffs. Food Control 12(7), 409–417 (2001)

    Article  Google Scholar 

  33. D.R. Heldman, D.B. Lund, C. Sabliov, Handbook of Food Engineering (CRC Press, Boca Raton, 2006)

    Book  Google Scholar 

  34. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  CAS  Google Scholar 

  35. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62(7), 1723–1732 (1940)

    Article  CAS  Google Scholar 

  36. M. Mathlouthi, B. Roge, Water vapour sorption isotherms and the caking of food powders. Food Chem. 82(1), 61–71 (2003)

    Article  CAS  Google Scholar 

  37. R.M. Syamaladevi, S.S. Sablani, J. Tang, J. Powers, B.G. Swanson, Water sorption and glass transition temperatures in red raspberry (Rubus idaeus). Thermochim. Acta 503, 90–96 (2010)

    Article  CAS  Google Scholar 

  38. A.S. Mujumdar, Principles, classification, and selection of dryers, in Handbook of Industrial Drying, 3rd edn. (CRC Press, Boca Raton, 2006)

    Chapter  Google Scholar 

  39. L.B. Rockland, Water activity and strage stability. Food Technol. 23, 1241–1251 (1969)

    Google Scholar 

  40. R. Ilker, A.S. Szczesniak, Structural and chemical bases for texture of plant foodstuffs. J. Texture Stud. 21(1), 1–36 (1990)

    Article  CAS  Google Scholar 

  41. R.M. Reeve, Relationships of histological structure to texture of fresh and processed fruits and vegetables. J. Texture Stud. 1(3), 247–284 (1970)

    Article  CAS  PubMed  Google Scholar 

  42. M.U.H. Joardder, M.A. Karim, C. Kumar, Better understanding of food material on the basis of water distribution using thermogravimetric analysis, in International Conference on Mechanical, Industrial and Materials Engineering (ICMIME2013), Rajshahi, Bangladesh (2013)

    Google Scholar 

  43. H. Salwin, The role of moisture in deteriorative reactions of dehydrated foods, in Freeze-Drying of Foods (1962), p. 58

    Google Scholar 

  44. L.B. Rockland, Water activity and storage stability. Food Technol. 23(10), 1241 (1969)

    Google Scholar 

  45. M.E. Katekawa, M.A. Silva, On the influence of glass transition on shrinkage in convective drying of fruits: a case study of banana drying. Dry. Technol. 25(10), 1659–1666 (2007)

    Article  Google Scholar 

  46. G. Moraga, N. Martınez-Navarrete, A. Chiralt, Water sorption isotherms and glass transition in strawberries: influence of pretreatment. J. Food Eng. 62(4), 315–321 (2004)

    Article  Google Scholar 

  47. G. Moraga, N. Martínez-Navarrete, A. Chiralt, Water sorption isotherms and phase transitions in kiwifruit. J. Food Eng. 72(2), 147–156 (2006)

    Article  Google Scholar 

  48. A. Lopez-Malo, E. Palou, J. Welti, P. Corte, A. Argaiz, Moisture sorption characteristics of blanched and osmotically treated apples and papayas. Dry. Technol. 15(3–4), 1173–1185 (1997)

    Article  CAS  Google Scholar 

  49. T.P. Labuza, Sorption phenomena in foods: theoretical and practical aspects, in Theory, Determination and Control of Physical Properties of Food Materials (Springer, Berlin, 1975), pp. 197–219

    Chapter  Google Scholar 

  50. H.-D. Isengard, Water content, one of the most important properties of food. Food Control 12(7), 395–400 (2001)

    Article  Google Scholar 

  51. M.S. Rahman, State diagram of foods: its potential use in food processing and product stability. Trends Food Sci. Technol. 17(3), 129–141 (2006)

    Article  CAS  Google Scholar 

  52. H.A. Iglesias, J. Chirife, Correlation of BET monolayer moisture content in foods with temperature. Int. J. Food Sci. Technol. 19(4), 503–506 (1984)

    Article  Google Scholar 

  53. J. Welti-Chanes, E. Pérez, J.A. Guerrero-Beltrán, S.M. Alzamora, F. Vergara-Balderas, Chapter 13. Applications of water activity management in the food industry, in Water Activity in Foods (Blackwell, Iowa, 2008), p. 341

    Google Scholar 

  54. L. Godbillot, P. Dole, C. Joly, B. Rogé, M. Mathlouthi, Analysis of water binding in starch plasticized films. Food Chem. 96(3), 380–386 (2006)

    Article  CAS  Google Scholar 

  55. M. Caurie, A practical approach to water sorption isotherms and the basis for the determination of optimum moisture levels of dehydrated foods. Int. J. Food Sci. Technol. 6(1), 85–93 (1971)

    Article  Google Scholar 

  56. Y. Sato, S. Noguchi, Water sorption characteristics of dietary fibers. J. Home Econ. Japan 44(8), 625–631 (1993)

    CAS  Google Scholar 

  57. A.H. Yukinori Sato, Y. Wadab, Relationship between monolayer and multilayer water contents, and involvement in gelatinization of baked starch products. J. Food Eng. 96(2), 172–178 (2010)

    Article  CAS  Google Scholar 

  58. J. Wolfe, G. Bryant, K.L. Koster, What is’ unfreezable water’, how unfreezable is it and how much is there? CryoLetters 23(3), 157–166 (2002)

    PubMed  Google Scholar 

  59. N. Aktas, Y. Tülek, H.Y. Gökalp, Determination of differences in free and bound water contents of beef muscle by DSC under various freezing conditions. J. Therm. Anal. 50(4), 617–624 (1997)

    Article  CAS  Google Scholar 

  60. R. Toledo, M.P. Steinberg, A.I. Nelson, Quantitative determination of bound water by NMR. J. Food Sci. 33(3), 315–317 (1968)

    Article  CAS  Google Scholar 

  61. J. Kuprianoff, Bound water in foods, in Fundamental Aspects of the Dehydration of Foodstuffs (1958), pp. 14–23

    Google Scholar 

  62. R.B. Duckworth, Differential thermal analysis of frozen food systems. I. The determination of unfreezable water. Int. J. Food Sci. Technol. 6(3), 317–327 (1971)

    Article  Google Scholar 

  63. E.G. Murakami, M.R. Okos, Calculation of initial freezing point, effective molecular weight and unfreezable water of food materials from composition and thermal conductivity data1. J. Food Process Eng. 19(3), 301–320 (1996)

    Article  Google Scholar 

  64. O.A. Plumb, G.A. Spolek, B.A. Olmstead, Heat and mass transfer in wood during drying. Int. J. Heat Mass Transf. 28(9), 1669–1678 (1985)

    Article  Google Scholar 

  65. D.M. Griffin, Water and microbial stress, in Advances in Microbial Ecology (Springer, Berlin, 1981), pp. 91–136

    Chapter  Google Scholar 

  66. Z. Liu, Z. Wu, X. Wang, J. Song, W. Wu, Numerical simulation and experimental study of deep bed corn drying based on water potential. Math. Probl. Eng. 2015, 13 (2015)

    Google Scholar 

  67. J.A. Robertson, F.D. de Monredon, P. Dysseler, F. Guillon, R. Amado, J.-F. Thibault, Hydration properties of dietary fibre and resistant starch: a European collaborative study. LWT-Food Sci. Technol. 33(2), 72–79 (2000)

    Article  CAS  Google Scholar 

  68. F. Figuerola, M.L. Hurtado, A.M. Estévez, I. Chiffelle, F. Asenjo, Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 91(3), 395–401 (2005)

    Article  CAS  Google Scholar 

  69. S. Vetter, H. Kunzek, Material properties of processed fruit and vegetables. II. Water hydration properties of cell wall materials from apples. Eur. Food Res. Technol. 214(1), 43–51 (2002)

    Article  CAS  Google Scholar 

  70. S.N. Heller, L.R. Hackler, Water-holding capacity of various sources of plant fiber. J. Food Sci. 42(4), 1137 (1977)

    Article  Google Scholar 

  71. M.U.H. Joardder, C. Kumar, M.A. Karim, Food structure: its formation and relationships with other properties. Crit. Rev. Food Sci. Nutr. 57(6), 1190–1205 (2017)

    Article  CAS  PubMed  Google Scholar 

  72. H. Hatakeyama, T. Hatakeyama, Interaction between water and hydrophilic polymers. Thermochim. Acta 308(1–2), 3–22 (1998)

    Article  CAS  Google Scholar 

  73. I.C. Watt, Theory of water sorption by biological materials, in Physical Properties of Foods, ed. by R. Jowitt et al. (1983)

    Google Scholar 

  74. M. Caurie, The unimolecular character of the classical Brunauer, Emmett and Teller adsorption equation and moisture adsorption. Int. J. Food Sci. Technol. 40(3), 283–293 (2005)

    Article  CAS  Google Scholar 

  75. M. Tanaka, A. Mochizuki, Effect of water structure on blood compatibility—thermal analysis of water in poly (meth) acrylate. J. Biomed. Mater. Res. Part A 68(4), 684–695 (2004)

    Article  CAS  Google Scholar 

  76. T. Hatakeyama, H. Hatakeyama, Thermal Properties of Green Polymers and Biocomposites, vol 4 (Springer Science & Business Media, Berlin, 2006)

    Google Scholar 

  77. D.R. Briggs, Water relationships in colloids. II. J. Phys. Chem. 36(1), 367–386 (1932)

    Article  CAS  Google Scholar 

  78. H.T. Meryman, Freeze-drying, in Cryobiology, ed. by H.T. Meryman (Academic, London, 1966) pp. 609–663

    Google Scholar 

  79. L.C. Dickinson, P. Chinachoti, Mobility of “ unfreezable ” and “ freezable ” water in waxy corn starch by 2 H and 1 H NMR. J. Agric. Food Chem. 8561(96), 62–71 (1998)

    Google Scholar 

  80. A. Halder, A.K. Datta, R.M. Spanswick, Water transport in cellular tissues during thermal processing. AICHE J. 57(9), 2574–2588 (2011)

    Article  CAS  Google Scholar 

  81. M.U.H. Joardder, R.J. Brown, C. Kumar, M.A. Karim, Effect of cell wall properties on porosity and shrinkage of dried apple. Int. J. Food Prop. 18(10), 2327–2337 (2015)

    Article  Google Scholar 

  82. M.U.H. Joardder, A. Karim, C. Kumar, R.J. Brown, Porosity: Establishing the Relationship Between Drying Parameters and Dried Food Quality (Springer, Berlin, 2015)

    Google Scholar 

  83. L. Van Der Weerd, M.M.A.E. Claessens, C. Efde, H. Van As, Nuclear magnetic resonanceimaging of membrane permeability changes in plants during osmoticstress. Plant Cell Environ. 25(11), 1539–1549 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joardder, M.U.H., Mourshed, M., Hasan Masud, M. (2019). Water in Foods. In: State of Bound Water: Measurement and Significance in Food Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-99888-6_2

Download citation

Publish with us

Policies and ethics