Skip to main content

Change Detection Tool Based on GSV to Help DNNs Training

  • Conference paper
  • First Online:
Advances in Physical Agents (WAF 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 855))

Included in the following conference series:

  • 415 Accesses

Abstract

We present a system to carry out the automatic detection of structural changes through a Deconvolutional Neural Network (DNN) in images synthesized from panoramas provided by an online and open source map tool, Google Street View (GSV). Our approach is motivated by the need of more efficient and frequent updates on large-scale maps for autonomous driving applications. To train and evaluate our DNN we build a geolocation database, an order of magnitude larger than other existing datasets, based on pairs of images and their corresponding ground truth that shows changes detection over time. A tool has been implemented to guide manual annotation of changes using panoramas all over the world. The tool chains the panoramas and depth maps creation, the image synthesis and the labelling synthesized images generating their groundtruth. Finally, a DNN has been trained to automatically detect changes validating our methodology by using the obtained dataset, yielding better results that other state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin-Brualla, R., Gallup, D., Seitz, S.M.: Time-lapse mining from internet photos. ACM Trans. Graph. (TOG) 34(4), 62 (2015)

    Article  Google Scholar 

  2. Matzen, K., Snavely, N.: Scene chronology. In: European Conference on Computer Vision, pp. 615–630. Springer (2014)

    Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  4. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)

    Google Scholar 

  5. Sünderhauf, N., Shirazi, S., Jacobson, A., Dayoub, F., Pepperell, E., Upcroft, B., Milford, M.: Place recognition with convnet landmarks: viewpoint-robust, condition-robust, training-free. In: Proceedings of Robotics: Science and Systems XII (2015)

    Google Scholar 

  6. Ros, G., Stent, S., Alcantarilla, P.F., Watanabe, T.: Training constrained deconvolutional networks for road scene semantic segmentation, arXiv preprint arXiv:1604.01545 (2016)

  7. Alcantarilla P.F., Stent, S., Ros, G., Arroyo, R., Gherardi, R.: Street-view change detection with deconvolutional networks. In: Robotics: Science and Systems (2016)

    Google Scholar 

  8. Kim, S., Min, D., Ham, B., Ryu, S., Do, M.N., Sohn, K.: DASC: dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2103–2112 (2015)

    Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  10. Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)

    Article  Google Scholar 

  11. Sakurada, K., Okatani, T., Deguchi, K.: Detecting changes in 3D structure of a scene from multi-view images captured by a vehicle-mounted camera. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 137–144. IEEE (2013)

    Google Scholar 

  12. Taneja, A., Ballan, L., Pollefeys, M.: Image based detection of geometric changes in urban environments. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2336–2343. IEEE (2011)

    Google Scholar 

  13. Finman, R., Whelan, T., Kaess, M., Leonard, J.J.: Toward lifelong object segmentation from change detection in dense RGB-D maps. In: 2013 European Conference on Mobile Robots (ECMR), pp. 178–185. IEEE (2013)

    Google Scholar 

  14. Cavallo, M.: 3D city reconstruction from google street view. Comput. Graph. J. (2015)

    Google Scholar 

  15. Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., Pajdla, T.: 24/7 place recognition by view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1808–1817 (2015)

    Google Scholar 

  16. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, pp. 10–5244. Citeseer (1988)

    Google Scholar 

  17. Wang, H., Mirota, D., Hager, G.D.: A generalized kernel consensus-based robust estimator. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 178–184 (2010)

    Article  Google Scholar 

  18. Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.: 3D traffic scene understanding from movable platforms. In: Pattern Analysis and Machine Intelligence (PAMI) (2014)

    Article  Google Scholar 

  19. Sakurada, K., Okatani, T.: Change detection from a street image pair using CNN features and superpixel segmentation. In: BMVC, pp. 1–61 (2015)

    Google Scholar 

  20. Stent, S., Gherardi, R., Stenger, B., Cipolla, R.: Detecting change for multi-view, long-term surface inspection. In: BMVC, pp. 1–127. Citeseer (2015)

    Google Scholar 

  21. Arroyo, R., Alcantarilla, P.F., Bergasa, L.M., Romera, E.: Fusion and binarization of CNN features for robust topological localization across seasons. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4656–4663. IEEE (2016)

    Google Scholar 

Download references

Acknowledgment

This work has been partially funded by the Spanish MINECO/FEDER through the SmartElderlyCar project (TRA2015-70501-C2-1-R), the DGT through the SERMON project (SPIP2017-02305), and from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, fase III; S2013/MIT-2748), funded by Programas de actividades I+D (CAM) and cofunded by EU Structural Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gómez Huélamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huélamo, C.G., Alcantarilla, P.F., Bergasa, L.M., López-Guillén, E. (2019). Change Detection Tool Based on GSV to Help DNNs Training. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-5_9

Download citation

Publish with us

Policies and ethics