Skip to main content

Planning-Centered Architecture for RoboCup SSPL @Home

  • Conference paper
  • First Online:
Advances in Physical Agents (WAF 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 855))

Included in the following conference series:

Abstract

Software architectures in robotics organize perception and action to solve a problem. In this paper we present a description of the software architecture applied by our team in the Social Standard Platform League (SSPL) of the @home category of RoboCup. This league simulates a domestic scenario where the robot must interact with the dependent people who live in it to help them in their daylife. This architecture is designed to solve the tests of this league, addressing the integration of navigation, interaction, generation of behaviors and perception. Our architecture follows a three-layer organization where the core is a classic planner that uses Planing Domain Definition Language (PPDL). This architecture has been validated in the humanoid robot Pepper during our participation in the RoboCup 2018 in Montreal, Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burkhard, H.-D., Asada, M., Bonarini, A., Jacoff, A., Nardi, D., Riedmiller, M.A., Sammut, C., Sklar, E., Veloso, M.M.: RoboCup - yesterday, today, and tomorrow. workshop of the executive committee in Blaubeuren. In: Robot Soccer World Cup (RoboCup), October 2003, pp. 15–34 (2003). https://doi.org/10.1007/978-3-540-25940-4_2

    Chapter  Google Scholar 

  2. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: the robot world cup initiative. In: Proceedings of the First International Conference on Autonomous Agents (AGENTS 2097), pp. 340–347. ACM, New York (1997). https://doi.org/10.1145/267658.267738

  3. Campbell, M., Hoane, A.J., Hsu, F.: Deep blue. Artif. Intell. 134(12), 57–83 (2002). https://doi.org/10.1016/S0004-3702(01)00129-1

    Article  MATH  Google Scholar 

  4. Amigoni, F., Bonarini, A., Fontana, G., Matteucci, M., Schiaffonati, V.: 2nd Workshop on Robot Competitions: Benchmarking, Technology Transfer, and Education, European Robotics Forum 2013, Lyon (2013). https://doi.org/10.5772/intechopen.69115

  5. Lima, P.U., Nardi, D., Kraetzschmar, G.K., Bischoff, R., Matteucci, M.: RoCKIn and the European robotics league: building on RoboCup best practices to promote robot competitions in Europe. In: Behnke S., Sheh R., Sarel S., Lee D. (eds.) RoboCup 2016: Robot World Cup XX. RoboCup 2016. LNCS, vol 9776. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-68792-6_15

    Chapter  Google Scholar 

  6. Buehler, M., Iagnemma, K., Singh, S.: The 2005 DARPA Grand Challenge: The Great Robot Race, 1st edn. Springer (2007, incorporated)

    Google Scholar 

  7. Buehler, M., Iagnemma, K., Singh, S.: The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, 1st edn. Springer (2009, incorporated)

    Google Scholar 

  8. Fitzpatrick, P., Metta, G., Natale, L.: Towards long-lived robot genes. Robot. Auton. Syst. 56(1), 29–45 (2008). https://doi.org/10.1016/j.robot.2007.09.014

    Article  Google Scholar 

  9. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  10. Naoqi Development Guide. http://doc.aldebaran.com/2-5/index_dev_guide.html

  11. Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL - the planning domain definition language. Technical report, CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)

    Google Scholar 

  12. Brooks, R.A.: Elephants don’t play chess. Robot. Auton. Syst. 6(12), 3–15 (1990). https://doi.org/10.1016/S0921-8890(05)80025-9

    Article  Google Scholar 

  13. Aguero, C.E., Canas, J.M., Martin, F., Perdices, E.: Behavior-based iterative component architecture for soccer applications with the NAO humanoid. In: Proceedings of the 5th Workshop on Humanoid SoccerRobots @ Humanoids 2010, Nashville, pp. 29–34 (2010)

    Google Scholar 

  14. Rodríguez-Lera, F.J., Matellán-Olivera, V., Conde-González, M., Martín-Rico, F.: HiMoP: a three-component architecture to create more human-acceptable social-assistive robots: motivational architecture for assistive robots. J. Cogn. Process. 19(2), 233–244 (2018). https://doi.org/10.1007/s10339-017-0850-5

    Article  Google Scholar 

  15. Iocchi, L., Jeanpierre, L., Lázaro, M.T., Mouaddib, A.-I.: A practical framework for robust decision-theoretic planning and execution for service robots. In: Proceedings of the Twenty-Sixth International Conference on Automated Planning and Scheduling (ICAPS 2016), pp. 486–494 (2016)

    Google Scholar 

  16. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989). https://doi.org/10.1109/5.24143

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU. It has also received funding from the RETOGAR project (TIN2016-76515-R) from the Spanish Ministerio de Economía y Competitividad. This research has received material from NVidia Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Martín-Rico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martín-Rico, F., Ginés, J., Vargas, D., Rodríguez-Lera, F.J., Matellán-Olivera, V. (2019). Planning-Centered Architecture for RoboCup SSPL @Home. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-5_20

Download citation

Publish with us

Policies and ethics