Skip to main content

A Semi-analytical Approach to Understand Remote Sensing-based Backscattering Characteristics for Kerala Coast Using In Situ Observation

  • Chapter
  • First Online:
Book cover Applications and Challenges of Geospatial Technology

Abstract

A quasi-analytical algorithm (QAA)-based distribution and variability of particulate backscattering coefficient (b bp) was studied for Kerala coast, India. A total of 28 observations were made in the coastal stretch of about 410 km from Kasaragod to Ernakulam for up to 50 m depth. Optical data were collected using a hyperspectral underwater radiometer to evaluate the b bp, water-leaving radiance (L w) and chlorophyll-a (Chl-a) concentration. We aimed to achieve three objectives, i.e. (1) QAA-based b bp calculation using underwater radiometer and its sensitivity to downwelling irradiance (Ed) and surface radiance (Es), (2) validation of the relationship between b bp and Chl-a concentration for inshore and offshore coastal waters and (3) the relationship of L w with QAA-based b bp and in situ Chl-a. We observed that the range of b bp values varied between 0.07 and 0.002 m−1, with a maximum b bp value between 1200 and 1400 h for inshore waters. Ed and Es are independent variables and were placed at the denominator to calculate b bp, where Ed is found relatively more sensitive than Es. The correlation between b bp and Chl-a found growing with depth (< 20 m R 2: 0.067, > 20 m R 2: 0.487), due to the increasing complexity of coastal waters (Case II). While relating the Chl-a and b bp with Lw, showed a poor corleation with a low R 2 value of 0.229 and 0.203, respectively, signifying the maximum scattering due to other suspended matters with less contribution from Chl-a pigment in highly turbid coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boss E, Stramski D, Bergmann T, Pegau WS, Lewis M (2004) Why should we measure the optical backscattering coefficient? Oceanography 17:44–49

    Article  Google Scholar 

  • Claustre H, Bishop J, Boss E, Bernard S, Berthon JF, Coatanoan C, Johnson K, Lotiker A, Ulloa A, Perry MJ, D’Ortenzio F, D’andon OHF, Uitz J (2010) Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies- Proceedings of oceanObs’09: sustained ocean observations and information for society (Vol. 2), Venice, Italy

    Google Scholar 

  • Deidun A, Drago A, Gauci A, Galea A, Azzopardi J, Mélin F (2011) A first attempt at testing correlation between MODIS Ocean colour data and in situ chlorophyll-a measurements within Maltese coastal waters. Proc of SPIE 8175:1–8

    Google Scholar 

  • Dickey TD (2003) Emerging ocean observations for interdisciplinary data assimilation systems. J Mar Syst, 40– 41C, 5–48

    Article  Google Scholar 

  • Gordon HR, Morel A (1983) Remote assessment of ocean color for interpretation of satellite visible imagery: a review (eds: Barber RT, Mooers CNK, Bowman MJ, Zeitzschel B). Springer, New York

    Google Scholar 

  • Gordon HR, Brown OB, Evans RH, Brown JW, Smith RC, Baker KS, Clarks DK (1988) A semianalytic radiance model of ocean color. J Geophys Res 93:10909–10924

    Article  Google Scholar 

  • Graff JR, Westberry TK, Milligan AJ, Brown MB, Dall’Olmo G, van Dongen-Vogels V, Reifel KM, Behrenfeld MJ (2015) Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep-Sea Res Pt I 102:16–25

    Google Scholar 

  • Hu C, Feng L, Lee ZP (2013) Uncertainties of SeaWiFS and MODIS remote sensing reflectance: implications from clear water measurements. Remote Sens Environ 133:168–182

    Article  Google Scholar 

  • Kostadinov TS, Siegel DA, Maritorena S (2010) Global variability of phytoplankton functional types from space: assessment via the particle size distribution. Biogeosciences 7:3239–3257

    Article  Google Scholar 

  • Latha TP, Nagamani PV, Rao BS, Amarendra K, Rao KH, Choudhury SB, Dash SK (2013) Particle backscattering variability in the coastal waters of Bay of Bengal: a case study along off Kakinada and Yanam regions. Geosci Remote Sens Lett 10(6):1517–1521

    Article  Google Scholar 

  • Lee ZP, Hu C (2006) Global distribution of case-1 waters: an analysis from SeaWiFS measurements. Remote Sens Environ 101:270–276

    Article  Google Scholar 

  • Lee ZP, Carder KL, Peacock TG, Davis CO, Mueller JL (1996) Method to derive ocean absorption coefficients from remote-sensing reflectance. Appl Opt 35(3):453–462

    Article  Google Scholar 

  • Lee ZP, Carder KL, Arnone R (2002) Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters. Appl Opt 41:5755–5772

    Article  Google Scholar 

  • Lee ZP, Carder KL, Mobley CD, Steward RG, Patch JS (1999) Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl Opt 38:3831–3843

    Article  Google Scholar 

  • Li S, Song K, Mu G, Zhao Y, Ma J, Ren J (2016) Evaluation of the quasi-analytical algorithm (QAA) for estimating Total absorption coefficient of turbid inland waters in Northeast China. Appl Earth Observ Remote Sens 9(9):4022–4036

    Article  Google Scholar 

  • Loisel H, Meriare X, Berthan, Poteau A (2007) Investigation of the optical back scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea. Limnol Oceanogr 52(2):739–752

    Article  Google Scholar 

  • Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J Geophys Res 93:10749–10768

    Article  Google Scholar 

  • Morel A, Maritorena S (2001) Bio-optical properties of oceanic waters: a reappraisal. J Geophys Res 106:7163–7180

    Article  Google Scholar 

  • Nechad, B., Dogliotti, A., Ruddick, K., Doxaran, D. (2016) Particulate backscattering and suspended matter concentration retrieval from remote-sensed turbidity in various coastal and riverine turbid waters. In: Proceedings of ESA living planet symposium, Prague, 9–13 May 2016, ESA-SP 740

    Google Scholar 

  • Riser SC, Johnson KS (2008) Net production of oxygen in the subtropical ocean. Nature 451(7176):323–325

    Article  Google Scholar 

  • Seo H, Xie SP, Murtugudde R, Jochum M, Miller AJ (2009) Seasonal effects of Indian Ocean freshwater forcing in a regional coupled model. J Clim 22:6577–6596

    Article  Google Scholar 

  • Smith RC, Baker KS (1981) Optical properties of the clearest natural waters. Appl Opt 20:177–184

    Article  Google Scholar 

  • Stramski D, Boss E, Bogucki D, Voss KJ (2004) The role of seawater constituents in light backscattering in the ocean. Prog Oceanogr 61:27–56

    Article  Google Scholar 

  • Whitmire AL, Boss E, Cowles TJ, Pegau WS (2007) Spectral variability of the particulate backscattering ratio. Opt Express 15(11):7022

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Project Director of ICMAM in facilitating the work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matin, S., Dash, S.K., Usha, T. (2019). A Semi-analytical Approach to Understand Remote Sensing-based Backscattering Characteristics for Kerala Coast Using In Situ Observation. In: Kumar, P., Rani, M., Chandra Pandey , P., Sajjad, H., Chaudhary, B. (eds) Applications and Challenges of Geospatial Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99882-4_4

Download citation

Publish with us

Policies and ethics