Skip to main content

Solving Probabilistic Problems with Technologies in Middle and High School: The French Case

  • Chapter
  • First Online:
Broadening the Scope of Research on Mathematical Problem Solving

Part of the book series: Research in Mathematics Education ((RME))

  • 1025 Accesses

Abstract

The place of probability in the teaching of mathematics is currently growing and makes greater use of technology. Like in many other domains, calculators and computers have become very useful and necessary tools in that domain, and indeed, they are widely used in teaching. This chapter is a survey of how these tools are used to solve probability problems in French middle and high school. These tools are perhaps neither as transparent nor as easy to use as may first appear and may pose didactical problems. After describing the current French context (didactical frameworks, curricula and official resources), a study of the problems most commonly given in classrooms, and the associated tasks to be performed by students, is undertaken through an analysis of official documents and textbooks, two of the resources most used by teachers.

Random generators set up in computers and calculators allow the performing of a great number of tries of random experiments in a quite short time. This can foster the introduction of a new approach to the notion of probability. In many cases, to solve some problems, students first have to elaborate – even if it is most often implicit – a model of the situation and then to simulate it using software in order to get an idea of the solution and, possibly, a way towards the proof. By so doing they have to move through several probabilistic and statistical paradigms, mostly with no explicit clue to help them identify the suitable one(s), which may result in their mixing up statistical and probabilistic notions.

The French curricula introduce inferential statistics at the end of high school; here, as well, technology has changed how estimation problems can be solved. Another curricular question is the introduction of continuous probability distributions, especially normal law. This question is tackled by textbooks through problematic situations, concrete or general, but in this intended processes software is in most cases underused (when not ill-used).

Although concerned with the French situation, some elements may, of course, apply to other countries in which the same problems are given to students.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    My translation.

  2. 2.

    See Brousseau (1997) and Warfield (2006).

  3. 3.

    See Chevallard (1999), and Chevallard (2002).

  4. 4.

    See Vergnaud (1990).

  5. 5.

    My translation.

  6. 6.

    My translation.

  7. 7.

    My translation.

  8. 8.

    My translation.

  9. 9.

    My translation.

  10. 10.

    My translation.

  11. 11.

    My translation.

  12. 12.

    My translation.

  13. 13.

    My translation.

  14. 14.

    My translation.

  15. 15.

    My translation.

  16. 16.

    Although in fact, when simulating a random experiment, what one actually does is testing the quality of the generator.

  17. 17.

    My translation.

  18. 18.

    This implies that a model of the experiment is available, that is, a probability can be assigned to each issue.

  19. 19.

    The origin of this problem is the entry ‘Croix ou Pile’ in the Encyclopédie (1751–1772) supervised by Jean le Rond d’Alembert and Denis Diderot.

  20. 20.

    The students were in fact given the original text, in which d’Alembert gives both the solution given ‘by all authors’ (3/4) and his own solution (2/3).

  21. 21.

    My translation.

  22. 22.

    My translation.

  23. 23.

    Deledicq, A. (dir.) Mathématiques classe de Seconde. Collection Indice. Bordas, Paris 2000, 138.

  24. 24.

    My translation.

  25. 25.

    Beltramone et al., 2015

  26. 26.

    My translation.

  27. 27.

    Malaval et al. (2011), p. 399.

  28. 28.

    Barra, R. et al. Mathématiques classe de Première. Collection Transmath. Nathan, Paris 2011, 303.

  29. 29.

    This division into five parts is mine; it is intended to make the following discussion easier.

  30. 30.

    My translation.

  31. 31.

    ‘When the number of experimentations grows up the relative frequency gets nearer the probability’.

  32. 32.

    In this case, the ‘pedagogical artefact’ consisting of colouring the dice is no use.

  33. 33.

    My translation.

  34. 34.

    My translation.

  35. 35.

    After Beltramone et al. (2015).

  36. 36.

    The use of a logical function is not necessary; it just entrusts the conclusion to the device.

  37. 37.

    My translation.

  38. 38.

    My translation.

  39. 39.

    My translation.

  40. 40.

    My translation.

  41. 41.

    In particular, for the area condition GeoGebra can display the area under the curve of a function.

  42. 42.

    Le Yaouanq (2012), p. 399.

  43. 43.

    We may notice that the big size of the sample results in a histogram very close to the theoretical curve and consequently makes the analogy easier to conceive and accept.

  44. 44.

    My translation.

  45. 45.

    Le Yaouanq (2012), p. 400.

  46. 46.

    My translation.

  47. 47.

    My translation.

  48. 48.

    My translation.

References

  • Artigue, M. (2016). Mathematical working spaces through networking lens. ZDM Mathematics Education, 48(6), 935–939.

    Article  Google Scholar 

  • Artigue, M., & Houdement, C. (2007). Problem solving in France: Didactic and curricular perspectives. ZDM Mathematic Education, 39(5–6), 365–382.

    Article  Google Scholar 

  • Batanero, C., Henry, M., & Parzysz, B. (2005). The nature of chance and probability). In G. A. Jones (Ed.), Exploring probability in school. Challenges for teaching and learning (pp. 15–37). Berlin: Springer.

    Chapter  Google Scholar 

  • Beltramone, J.-P., et al. (2015). Mathématiques Première S. Collection Déclic. Paris: Hachette.

    Google Scholar 

  • Bernoulli, J. (1713). Ars conjectandi. Basel: Impensis Thurnisiorum. http://www.sheynin.de/ download/bernoulli.pdf

    Google Scholar 

  • Biehler, R. (1991). Computers in probability education. In R. Kapadia & M. Borovcnik (Eds.), Chance encounters - probability in education (pp. 169–221). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Borovcnik, M. (2008). Strengthening the role of probability within statistics curricula. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education. Joint ICMI/IASE study (pp. 71–83). Berlin: Springer.

    Google Scholar 

  • Bosch, M., Chevallard, Y., & Gascón, J. (2005). Science or magic? The use of models and theories in didactics of mathematics. In M. Bosch (Ed.), Proceedings of the 4th Congress of the European Society for Research in Mathematics Education (pp. 1254–1263). Barcelona: University Ramon Llull.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics (1970–1990). Dordrecht: Kluwer.

    Google Scholar 

  • Bruillard, E. (1997). L’ordinateur à l’école: de l’outil à l’instrument. In L. O. Pochon & A. Blanchet (Eds.), L’ordinateur à l’école: de l’introduction à l’intégration (pp. 97–118). Neuchâtel: IRDP.

    Google Scholar 

  • Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique de la didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.

    Google Scholar 

  • Chevallard, Y. (2002). Organiser l’étude. In J. L. Dorier et al. (Eds.), Actes de la 11e Ecole d’été de Didactique des Mathématiques (pp. 3–22 & 41–56)). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Chow, A. F., & Van Hanegham, J. P. (2016). Transfer of solutions to conditional probability problems: Effects of example problem format, solution format, and problem context. Educational Studies in Mathematics, 93(1), 67–85.

    Article  Google Scholar 

  • Derouet, C. (2016). Les espaces de travail mathématiques relatifs au calcul intégral et aux lois de probabilité en terminale scientifique (PhD thesis, Université Paris-Diderot, Paris).

    Google Scholar 

  • Derouet, C., & Parzysz, B. (2016). How can histograms be useful for introducing continuous probability distributions? ZDM Mathematics Education, 48(6), 757–773.

    Article  Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Bern: Peter Lang.

    Google Scholar 

  • Girard, J.-C. (2008). The interplay of probability and statistics in teaching and in training the teachers in France. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education. Joint ICMI/IASE study (pp. 1–2). Berlin: Springer.

    Google Scholar 

  • Henry, M. (1999). L’introduction des probabilités au lycée: un processus de modélisation comparable à celui de la géométrie. Repères-IREM, 36, 15–34. http://www.univ-irem.fr/exemple/reperes/articles/36_article_245.pdf

    Google Scholar 

  • Henry, M. (2003). Des lois de probabilités continues en terminale S, pourquoi et pour quoi faire? Repères-IREM, 51, 5–25. http://www.univ-irem.fr/exemple/reperes/articles/51_article_356.pdf

    Google Scholar 

  • Houdement, C., & Kuzniak, A. (2006). Paradigmes géométriques et enseignement de la géométrie. Strasbourg. Annales de Didactique et de Sciences Cognitives, 11, 175–193. https://mathinfo.unistra.fr/fileadmin/upload/IREM/Publications/Annales_didactique/vol_11_et_suppl/adsc11-2006_007.pdf

    Google Scholar 

  • Jungwirth, H. (2009). Explaining a technologically shaped practice: A sociological view on computer based mathematics teaching. In C. Bardini, D. Vagost, & A. Oldknow (Eds.), Proceedings of the ICTMT 9. France: Metz: University of Metz.

    Google Scholar 

  • Kroese, D., Taimre, T., & Botev, Z. (2011). Handbook of Monte Carlo methods. New York: Wiley & Sons.

    Book  Google Scholar 

  • Kuhn, T. S. (1962).(1996). The structure of scientific revolutions (3rd ed.). Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Kuzniak, A. (2011). L’espace de travail mathématique et ses genèses. Annales de didactique et de sciences cognitives, 16, 9–24. https://mathinfo.unistra.fr/fileadmin/upload/IREM/Publications/ Annales_didactique/vol_15/adsc15-2010_003.pdf

    Google Scholar 

  • Le Yaouanq, M.-H. (dir.).(2012). Math’x. Term S. Enseignement spécifique. Paris: Didier.

    Google Scholar 

  • Malaval, J., et al. (2011). Mathématiques Terminale S. Collection Hyperbole. Paris: Nathan.

    Google Scholar 

  • Parzysz, B. (2003). L’enseignement de la statistique et des probabilités en France: évolution au cours d’une carrière d’enseignant (période 1965-2002). In B. Chaput & M. Henry (Eds.), Probabilités au lycée (pp. 9–34). Paris: ADIREM/APMEP.

    Google Scholar 

  • Parzysz, B. (2005). Quelques questions à propos des tables et des générateurs aléatoires. In B. Chaput & M. Henry (Eds.), Statistique au lycée I (pp. 181–199). Paris: APMEP.

    Google Scholar 

  • Parzysz, B. (2007). Expérience aléatoire et simulation: le jeu de croix ou pile. Relecture actuelle d’une expérimentation déjà un peu ancienne. Repères-IREM, 66, 27–44. http://www.univ-irem.fr/exemple/reperes/articles/66_article_453.pdf

    Google Scholar 

  • Parzysz, B. (2009). Simulating random experiments with computers in the classroom: Indispensable but not so simple. In C. Bardini, D. Vagost, & A. Oldknow (Eds.), Proceedings of the ICTMT 9 conference. Metz: University of Metz.

    Google Scholar 

  • Parzysz, B. (2011). Quelques questions didactiques de la statistique et des probabilités. Strasbourg. Annales de Didactique et de Sciences Cognitives, 16, 127–147. http://mathinfo.unistra.fr/fileadmin/upload/IREM/Publications/Annales_didactique/vol_16/adsc16-2011_006.pdf

    Google Scholar 

  • Perrin, D. (2015). Remarques sur l’enseignement des probabilités et de la statistique au lycée. Statistique et enseignement, 6(1), 51–63. http://www.statistique-et-enseignement.fr

    Google Scholar 

  • Pratt, D., Davies, N., & Connor, D. (2008). The role of technology in teaching and learning statistics. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education. Joint ICMI/IASE study (pp. 97–107). Berlin: Springer.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies. Une approche cognitive des instruments contemporains. Paris: Armand Colin.

    Google Scholar 

  • Roditi, E. (2009). L'histogramme: à la recherche du savoir à enseigner. Spirale. Revue de recherches en éducation, 43, 129–138. http://spirale-edu-revue.fr/IMG/pdf/8_roditi_spi43f.pdf

    Google Scholar 

  • Santos-Trigo, M., Moreno-Armella, L., & Camacho-Machin, M. (2016). Problem solving and the use of digital technologies within the mathematical working space framework. ZDM Mathematics Education, 48(6), 827–842.

    Article  Google Scholar 

  • Trouche, L. (2005). Des artefacts aux instruments, une approche pour guider et intégrer les usages des outils de calcul dans l’enseignement des mathématiques. In Actes de l'Université d'été de Saint-Flour - Le calcul sous toutes ses formes (pp. 265–289). Saint-Flour, France: Académie de Clermont-Ferrand. https://hal.archives-ouvertes.fr/hal-01559831

    Google Scholar 

  • Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(2–3), 133–170.

    Google Scholar 

  • Warfield, V. M. (2006). Invitation to didactique. Retrieved from https://www.math.washington.edu/-warfield/Didactique.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Parzysz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parzysz, B. (2018). Solving Probabilistic Problems with Technologies in Middle and High School: The French Case. In: Amado, N., Carreira, S., Jones, K. (eds) Broadening the Scope of Research on Mathematical Problem Solving. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-99861-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99861-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99860-2

  • Online ISBN: 978-3-319-99861-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics