Skip to main content

Problem-Solving and Mathematical Research Projects: Creative Processes, Actions, and Mediations

  • Chapter
  • First Online:
Broadening the Scope of Research on Mathematical Problem Solving

Abstract

Based on the idea that the creative process is one that involves skills that can be learned and developed with practice, this chapter presents the design and development of a Mathematical Research Project (MRP) for teaching. It examines the output and development of the modalities of mediations during processes of instrumental genesis working from problem-solving tasks (PST) to arrive at Mathematical Research Projects (MRPs). We will respond to the question: What teacher mediations articulate student creativity in Mathematical Research Projects? It will specify (1) identification of the student’s activity by the teacher – the operational mathematical invariants of the students’ schemes, the cognitive processes the student puts into action, and the domains of mathematical knowledge – and (2) mediated activity between the teacher and students regarding the instrument, the object, and the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The arithmetic progression will be denoted by a.p.

  2. 2.

    The final report of MRP will be denoted by TN-PI. The pages of the presented extracts are included.

References

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.

    Article  Google Scholar 

  • Artigue, M. & Baptist, P. (2012). Inquiry in Mathematics Educations. The Fibonacci Project. France. www.fibonacci-proyect.eu

  • Artigue, M., & Blomboj, M. (2013). Conceptualizing inquiry-based in mathematics educations. ZDM-The International Journal on Mathematics Education, 45, 797–810.

    Article  Google Scholar 

  • Beguin, P., & Rabardel, P. (2000). Designing for instrument-mediated activity. Scandinavian Journal of Information Systems, 12, 173–190.

    Google Scholar 

  • Blombreg, J., Suchman, L., & Trigg, R. H. (1996). Reflection on a work oriented design project. Human–Computer Interaction, 11(3), 237–266.

    Article  Google Scholar 

  • Braverman, A. (2010). Systematic implementation of inquiry projects in secondary school mathematics for the development of students’ creativity. Doctoral Dissertation. University of Ben-Gurion in Negev.

    Google Scholar 

  • Braverman A., & Samovol, P. (2008). Creativity: Transforming problem solving to the research. In M. E. Saul & M. Applebaum (Coords.), Proceedings of the 5th international conference on creativity in mathematics and the education of gifted students. (pp. 398–399). Haifa.

    Google Scholar 

  • Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. New York: Harper Collins.

    Google Scholar 

  • De la Fuente, C. (2013). De la resolución de problemas a las investigaciones matemáticas. Algunas estrategias didácticas. Uno - Revista de Didáctica de las Matemáticas, 64, 91–100.

    Google Scholar 

  • De la Fuente, C. (2016). Invariantes operacionales matemáticos en los proyectos de investigación matemática con estudiantes de secundaria. Doctoral dissertation. Complutense University of Madrid, Madrid.

    Google Scholar 

  • De la Fuente, C., Gómez-Chacón, I. M., & Arcavi, A. (2015). Tareas de investigación matemática con estudiantes de Secundaria. In I. Gómez-Chacón et al. (Eds.), Mathematical Working Space, Proceedings Fourth ETM Symposium (pp. 555–574). Madrid: Publicaciones del Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid.

    Google Scholar 

  • Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42–53). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Getzels, J. W. (1987). Creativity, Intelligence, and Problem Finding: Retrospect and Prospect, In Scott G. Isaksen (Ed.) Frontiers of Creativity Research: Beyond the Basics, (pp. 88–102). Buffalo, NY: Bearly.

    Google Scholar 

  • Gueudet, G., & Trouche, L. (2008). Du travail documentaire des enseignants : genèses, collectifs, communautés. Éducation et didactique, 2, 3 http://educationdidactique.revues.org/342. Accessed 15 Jan 2015

    Article  Google Scholar 

  • Gueudet, G., & Trouche, L. (2010). Ressources en ligne et travail collectif enseignant : accompagner les évolutions de pratique. In L. Mottier Lopez, C. Martinet, & V. Lussi (Eds.), Congrès Actualité de la Recherche en Education (pp. 1–10). Genève, Suisse: Université de Genève.

    Google Scholar 

  • Gueudet, G., & Trouche, L. (2011). Renouvellement des ressources et de l’activité des professeurs, renouvellement du regard sur une profession. In Colloque le travail enseignant au XXie siècle. Lyon, France: INRP http://www.inrp.fr/archives/colloques/travail-enseignant/contrib/3.htm,

    Google Scholar 

  • Guin, D., & Trouche, L. (2007). Une approche multidimentionnelle pour la conception collaborative de ressources pédagogiques? In M. Baron, D. Guin, & L. Trouche (Eds.), Ressources numériques et environnements d’apprentissages informatisés: conception et usages, regards croisés (pp. 197–228). Paris: Ed. Hermés.

    Google Scholar 

  • Guzmán, M. (1991). Para pensar mejor. Barcelona: Edit. Labor.

    Google Scholar 

  • Kruteskii, V. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: University of Chicago Press.

    Google Scholar 

  • Mason, J. (2010). Attention and Intention in Learning About Teaching Through Teaching. In R. Leikin & R. Zazkis (Eds.), Learning through teaching mathematics: Development of teachers’ knowledge and expertise in practice (pp. 23–47). New York: Springer.

    Chapter  Google Scholar 

  • Mason, J., Burton, L., & Stacey, K. (1985). Thinking mathematically. Wokingham, UK: Addison-Wesley.

    Google Scholar 

  • Mishra, P., & Henriksen, D. (2014). Revisited and remixed: Creative variations and twisting knobs. TechTrends, 58(1), 20–23.

    Article  Google Scholar 

  • Palatnik, A., & Koichu, B. (2015). Exploring insight: Focus on shifts of attention. For The Learning of Mathematics, 35(2), 9–14.

    Google Scholar 

  • Pastré, P. & Rabardel, P. (Eds). (2005). Modèles du sujet pour la conception – Dialectiques activités développement, Toulouse:Octarès.

    Google Scholar 

  • Polya, G. (1957). How to solve it? New York: Doubleday Anchor Books Edition.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies, une approche cognitive des instruments contemporains. Paris: Armand Colin.

    Google Scholar 

  • Rabardel, P. (2001). Instrument mediated activity in situations). In A. Blandford, J. Vanderdonckt, & P. Gray (Eds.), People and computers XV—Interaction without Frontiers (pp. 17–30). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Rabardel, P. (2005). Instrument subjectif et développement du pouvoir d’agir. In P. Rabardel & P. Pastré (dir.), Modèles du sujet pour la conception. Dialectiques activités développement (pp. 11–29). Toulouse: Octarès.

    Google Scholar 

  • Rabardel, P., & Béguin, P. (2005). Instrument mediated activity: From subject development to anthropocentric design. Theoretical Issues in Ergonomics Sciences., 6(5), 429–461.

    Article  Google Scholar 

  • Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. Interacting with Computers, 15, 665–691.

    Article  Google Scholar 

  • Samurçay, R., & Rabardel, P. (2004). Modèles pour l’analyse de l’activité et des compétences: propositions. In R. Samurçay & P. Pastré (Orgs.), Recherches en didactique professionnelle, (pp. 163–180). Toulouse, France : Octarès.

    Google Scholar 

  • Schoenfeld, A., & Kilpatrick, J. (2013). A U.S. perspective on the implementation of inquiry-based learning in mathematics. ZDM – The International Journal on Mathematics Education, 45(6), 901–909.

    Article  Google Scholar 

  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.

    Google Scholar 

  • Schoenfeld, A. H. (1992a). Learning to think mathematically: Problem solving, meta-cognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334–370). New York: Macmillan.

    Google Scholar 

  • Schoenfeld, A. H. (1992b). Reflections on doing and teaching mathematics. In A. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 53–70). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM-The International Journal on Mathematics Education, 41(1&2), 13–27.

    Article  Google Scholar 

  • Sriraman, B., Haavold, P., & Lee, K. (2013). Mathematical creativity and giftedness: A commentary on and review of theory, new operational views, and ways forward. ZDM-The International Journal on Mathematics Education, 45(2), 215–225.

    Article  Google Scholar 

  • Vergnaud, G. (1996). Au fond de l'apprentissage, la conceptualisation. In R. Noirfalise & M.-J. Perrin (Eds.), Ecole d'été de didactique des mathématiques (pp. 174–185). Université Clermont-Ferrand II, France.

    Google Scholar 

  • Wertsch, J. V. (1998). Mind as action. New York: Oxford University Press.

    Google Scholar 

  • Winograd, T., & Flores, C. F. (1986). Understanding computers and cognition: A new foundation for design. Norwood, NJ: Ablex.

    Google Scholar 

  • Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89–81.

    Article  Google Scholar 

  • Yeo, J. B. W., & Yeap, B. H. (2009). Investigating the processes of mathematical investigation. Paper presented at the 3rd Redesigning Pedagogy International Conference, Singapoor.

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish Ministry of the Economy and Competitive Affairs under project EDU2013-44047-P entitled “Characterization of specialized knowledge in Mathematics Teachers” and by special action grant from Cátedra UCM Miguel de Guzmán (Spain) under project “Mathematical Working Space” (UCM-CmdeGuzman-2015-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés M. Gómez-Chacón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gómez-Chacón, I.M., de la Fuente, C. (2018). Problem-Solving and Mathematical Research Projects: Creative Processes, Actions, and Mediations. In: Amado, N., Carreira, S., Jones, K. (eds) Broadening the Scope of Research on Mathematical Problem Solving. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-99861-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99861-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99860-2

  • Online ISBN: 978-3-319-99861-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics