Advertisement

DMA Optimal Layout for Protection of Water Distribution Networks from Malicious Attack

  • Simeone Chianese
  • Armando Di Nardo
  • Michele Di Natale
  • Carlo GiudicianniEmail author
  • Dino Musmarra
  • Giovanni Francesco Santonastaso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10707)

Abstract

Water distribution networks (WDNs) are among the most important civil networks, because they deliver drinking and industrial water to metropolitan areas, supporting economic prosperity and quality of life. Therefore, they constitute critical infrastructures (CIs) as systems whose operability are of crucial importance to ensure social survival and welfare. In the last years, extreme natural events and intentional malicious attacks have shown that global safeguard of systems cannot be ever performed. In this regard, critical infrastructure protection (CIP) strategies should be focused both on the prevention of these events and on the procedures for the functioning recovery and damage limitation. In this paper, starting from previous works of the authors, the impact of an intentional contamination attack to water distribution network and a possible strategy to mitigate the user risk have been studied, simulating the introduction of potassium cyanide with a backflow attack into water system. As protection technique, the water network partitioning (WNP) has been adopted in order to improve the management and also to reduce the extent of damage showing a dual use-value. WNP reveals to be an efficient way to protect water networks from malicious contamination, through the closure of gate valves by a remote control system creating semi-independent District Meter Areas (DMAs). The study also investigates the possibility to identify a priori the most critical point of a water distribution network for the malicious attack through a novel procedure based on topological metric. The methodology, tested on a real medium size water network in Italy, shows very interesting results in terms of mitigation risk.

Keywords

Critical infrastructure Water protection Water network partitioning 

References

  1. 1.
    Bashan, A., Berezin, Y., Buldyrev, S.V., Havlin, S.: The extreme vulnerability of interdependent spatially embedded networks. Nat. Phys. 9(10), 667–672 (2013)CrossRefGoogle Scholar
  2. 2.
    Edwards, M.: Critical Infrastructure Protection. IOS Press, Amsterdam (2014)Google Scholar
  3. 3.
    Eusgeld, I., Kroger, W., Sansavini, G., Schlapfer, M., Zio, E.: The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures. Reliab. Syst. Saf. 94(5), 954–963 (2009)CrossRefGoogle Scholar
  4. 4.
    Di Nardo, A., Di Natale, M., Giudicianni, C., Greco, R., Santonastaso, G.F.: Water supply network partitioning based on weighted spectral clustering. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds.) Complex Networks & Their Applications V. SCI, vol. 693. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-50901-3_63CrossRefGoogle Scholar
  5. 5.
    Facchini, A., et al.: Complexity science for sustainable smart water grids. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 26–41. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57711-1_3CrossRefGoogle Scholar
  6. 6.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Di Nardo, A., Di Natale, M., Giudicianni, C., Greco, R., Santonastaso, G.F.: Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures. Water Sci. Technol.: Water Supply (2017).  https://doi.org/10.2166/ws.2017.124
  8. 8.
    Carvalho, R., Buzna, L., Bono, F., Gutierrez, E., Just, W., Arrowsmith, D.: Robustness of trans-European gas networks. Phys. Rev. E 80, 016106 (2009)CrossRefGoogle Scholar
  9. 9.
    Newman, M.E.J.: The structure and function of networks. SIAM Rev. 45, 167–256 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    US EPA 2009: National Primary Drinking Water Regulations. US Environmental Protection Agency, Washington, DC. EPA 816-F-09-004Google Scholar
  11. 11.
    Nilsson, K.A., Buchberger, S.G., Clark, R.M.: Simulating exposures to deliberate intrusions into water distribution systems. J. Water Resour. Plann. Manag. 131(3), 228–236 (2005)CrossRefGoogle Scholar
  12. 12.
    Clark, R.M., Chandrasekaran, L., Buchberger, S.B.: Modeling the propagation of waterborne disease in water distribution systems: results from a case study. In: 8th WSDA Symposium, Cincinnati, OH (2006)Google Scholar
  13. 13.
    Di Nardo, A., Di Natale, M., Musmarra, D., Santonastaso, G.F., Tzatchkov, V., Alcocer-Yamanaka, V.H.: Dual-use value of network partitioning for water system management and protection from malicious contamination. J. Hydroinform. 17, 361–376 (2015)CrossRefGoogle Scholar
  14. 14.
    Kroll, D.: Protecting world water supplies against backflow attacks. Water Wastewater Int. 25(2), 4 (2010)Google Scholar
  15. 15.
    US EPA 2003: Response Protocol Toolbox: Planning for and Responding to Drinking Water Contamination Threats and IncidentsGoogle Scholar
  16. 16.
    Hall, J., et al.: On-line water quality parameters as indicators of distribution system contamination. J. Am. Water Works Assoc. 99(1), 66–67 (2007)CrossRefGoogle Scholar
  17. 17.
    Ostfeld, A.: The battle of water sensor networks (BWSN): a design challenge for engineers and algorithms. J. Water Resour. Plann. Manag. 134(6), 556–568 (2008)CrossRefGoogle Scholar
  18. 18.
    Kroll, D., King, K.: Methods for evaluating water distribution network early warning systems. J. Am. Water Works Assoc. 102(1), 79–89 (2010)CrossRefGoogle Scholar
  19. 19.
    Grayman, W.M., Murray, R., Savic, D.A.: Effects of redesign of water systems for security and water quality actors. In: Starrett, S. (ed.) Proceedings of the World Environmental and Water Resources Congress, Kansas City (2009)Google Scholar
  20. 20.
    WRC/WSA/WCA: Engineering and Operations Committee. Managing Leakage: UK Water Industry Managing Leakage. Rep. A-J. WRC/WSA/WCA, London (1994)Google Scholar
  21. 21.
    Di Nardo, A., Di Natale, M.: A heuristic design support methodology based on graph theory for district metering of water supply networks. Eng. Optim. 43(2), 193–211 (2011)CrossRefGoogle Scholar
  22. 22.
    Perelman, L.S., Allen, M., Preis, A., Iqbal, M., Whittle, A.J.: Automated sub-zoning of water distribution systems. Environ. Model Softw. 65, 1–14 (2015)CrossRefGoogle Scholar
  23. 23.
    Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23, 298 (1973)zbMATHGoogle Scholar
  24. 24.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)CrossRefGoogle Scholar
  25. 25.
    Di Nardo, A., Di Natale, M., Guida, M., Musmarra, D.: Water network protection from intentional contamination by sectorization. Water Resour. Manag. 27(6), 1837–1850 (2013)CrossRefGoogle Scholar
  26. 26.
    Bonacich, P.: A technique for analyzing overlapping membership. In Costner, H. (ed.) Sociological Methodology, pp. 176–185. Jossey-Bass, San Francisco (1972)Google Scholar
  27. 27.
    Rossman, L.A.: EPANET2 Users Manual. US EPA, Cincinnati, Ohio (2000)Google Scholar
  28. 28.
    Di Nardo, A., Di Natale, M., Santonastaso, G.F., Venticinque, S.: An automated tool for smart water network partitioning. Water Resour. Manag. 27(13), 4493–4508 (2013)CrossRefGoogle Scholar
  29. 29.
    Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Di Nardo, A., Di Natale, M., Giudicianni, C., Santonastaso, G.F., Tzatchkov, V., Varela, J.M.R., Yamanaka, V.H.A.: Water supply network partitioning based on simultaneous cost and energy optimization. Procedia Eng. 162, 238–245 (2016)CrossRefGoogle Scholar
  31. 31.
    Todini, E.: Looped water distribution networks design using a resilience index based heuristic approach. Urban Water 2(2), 115–122 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Simeone Chianese
    • 1
  • Armando Di Nardo
    • 1
    • 2
  • Michele Di Natale
    • 1
  • Carlo Giudicianni
    • 1
    Email author
  • Dino Musmarra
    • 1
  • Giovanni Francesco Santonastaso
    • 1
  1. 1.Dipartimento di IngegneriaUniversità degli Studi della Campania “Luigi Vanvitelli”AversaItaly
  2. 2.Istituto Sistemi Complessi (Consiglio Nazionale delle Ricerche)RomeItaly

Personalised recommendations