Advertisement

Assessing Urban Rail Transit Systems Vulnerability: Metrics vs. Interdiction Models

  • Stefano Starita
  • Annunziata Esposito AmideoEmail author
  • Maria Paola Scaparra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10707)

Abstract

Urban rail transit systems are highly vulnerable to disruptions, including accidental failures, natural disasters and terrorist attacks. Due to the crucial role that railway infrastructures play in economic development, productivity and social well-being of communities, evaluating their vulnerability and identifying their most critical components is of paramount importance. Two main approaches can be deployed to assess transport infrastructure vulnerabilities: vulnerability metrics and interdiction models. In this paper, we compare these two approaches and apply them to the Central London Tube to identify the most critical stations with respect to accessibility, efficiency and flow measures.

Keywords

Critical infrastructures Vulnerability analysis Interdiction 

References

  1. 1.
    Addis, B., Di Summa, M., Grosso, A.: Identifying critical nodes in undirected graphs: complexity results and polynomial algorithms for the case of bounded treewidth. Discret. Appl. Math. 161(16), 2349–2360 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Balijepalli, C., Oppong, O.: Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas. J. Transp. Geogr. 39, 145–155 (2014)CrossRefGoogle Scholar
  4. 4.
    7/7 London bombings: What happened on 7 July 2005? (2015). CBBC Newsround. Accessed 23 June 2017Google Scholar
  5. 5.
    Cappanera, P., Scaparra, M.P.: Optimal allocation of protective resources in shortest-path networks. Transp. Sci. 45(1), 64–80 (2011)CrossRefGoogle Scholar
  6. 6.
    Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: the median and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)CrossRefGoogle Scholar
  7. 7.
    Esposito Amideo, A., Scaparra, M.P.: A synthesis of optimization approaches for tackling critical information infrastructure survivability. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 75–87. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71368-7_7CrossRefGoogle Scholar
  8. 8.
    Fulkerson, D.R., Harding, G.C.: Maximizing the minimum source-sink path subject to a budget constraint. Math. Program. 13(1), 116–118 (1977)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Granata, D., Steeger, G., Rebennack, S.: Network interdiction via a critical disruption path: branch-and-price algorithms. Comput. Oper. Res. 40(11), 2689–2702 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gillett, F.: London Bridge station: commuters warned of major disruption on trains for rest of evening. Evening Standard (2017). Accessed 23 June 2017Google Scholar
  11. 11.
    Harley, N.: Fire at Euston Station continues to cause rail disruption. The Telegraph (2017). Accessed 23 June 2017Google Scholar
  12. 12.
    Jenelius, E., Petersen, T., Mattsson, L.G.: Importance and exposure in road network vulnerability analysis. Transp. Res. Part A: Policy Pract. 40(7), 537–560 (2006)Google Scholar
  13. 13.
    Kim, I.Y., de Weck, O.L.: Adaptive weighted-sum method for bi-objective optimization: pareto front generation. Struct. Multidiscip. Optim. 29(2), 149–158 (2005)CrossRefGoogle Scholar
  14. 14.
    Mach, K., Mastrandrea, M.: In: Field, C.B., Barros, V.R. (eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press, Cambridge and New York (2014)Google Scholar
  15. 15.
    Matisziw, T.C., Murray, A.T.: Modeling st path availability to support disaster vulnerability assessment of network infrastructure. Comput. Oper. Res. 36(1), 16–26 (2009)CrossRefGoogle Scholar
  16. 16.
    Murray, A.T.: An overview of network vulnerability modeling approaches. GeoJournal 78(2), 209–221 (2013)CrossRefGoogle Scholar
  17. 17.
    Office of Rail and Road: Statistical releases (2017). Accessed 23 June 2017Google Scholar
  18. 18.
    Ouyang, M., Zhao, L., Hong, L., Pan, Z.: Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability. Reliab. Eng. Syst. Saf. 123, 38–46 (2014)CrossRefGoogle Scholar
  19. 19.
    Scott, D.M., Novak, D.C., Aultman-Hall, L., Guo, F.: Network robustness index: a new method for identifying critical links and evaluating the performance of transportation networks. J. Transp. Geogr. 14(3), 215–227 (2006)CrossRefGoogle Scholar
  20. 20.
    Starita, S., Scaparra, M.P.: Passenger railway network protection: a model with variable post-disruption demand service. J. Oper. Res. Soc. 69(4), 1–18 (2017)Google Scholar
  21. 21.
    Sullivan, J., Aultman-Hall, L., Novak, D.: A review of current practice in network disruption analysis and an assessment of the ability to account for isolating links in transportation networks. Transp. Lett. 1(4), 271–280 (2009)CrossRefGoogle Scholar
  22. 22.
    Sun, D.J., Zhao, Y., Lu, Q.C.: Vulnerability analysis of urban rail transit networks: a case study of Shanghai, China. Sustainability 7(6), 6919–6936 (2015)CrossRefGoogle Scholar
  23. 23.
    Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. J. Comb. Optim. 28(1), 233–273 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, J.W., Rong, L.L.: Cascade-based attack vulnerability on the US power grid. Saf. Sci. 47(10), 1332–1336 (2009)CrossRefGoogle Scholar
  25. 25.
    Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stefano Starita
    • 1
  • Annunziata Esposito Amideo
    • 2
    Email author
  • Maria Paola Scaparra
    • 2
  1. 1.Warwick Business SchoolUniversity of WarwickCoventryUK
  2. 2.Kent Business SchoolUniversity of KentCanterburyUK

Personalised recommendations