Skip to main content

Potential Oscillations in Cellular Automaton Based Model for Passivation of Metal Surface

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Abstract

Cellular Automata based approach to modelling of the corrosion and passivation of metals in electrolytes is presented. We simulate the growth of the passive layer using an asynchronous CA, implemented for parallel processing on a GPU. In the present version of our model, the studied system is under galvanostatic control. The electric potential is adjusted to fix the current flow to a prescribed value. In the electrochemical experiments, this leads to potential oscillations for certain values of the current. This is related to the fact that for certain range of potentials our system displays a negative differential resistivity. We manage to obtain potential oscillations in our simulations. To our knowledge this is the first time that this peculiar feature of passivating system is reproduced by a computer simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bandman, O.: Parallel simulation of asynchronous cellular automata evolution. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 41–47. Springer, Heidelberg (2006). https://doi.org/10.1007/11861201_8

    Chapter  MATH  Google Scholar 

  2. Bandman, O.: Coarse-grained parallelization of cellular-automata simulation algorithms. In: Malyshkin, V. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 370–384. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73940-1_38

    Chapter  Google Scholar 

  3. Bartosik, Ł.: Simulation of nanostructured surfaces obtained by passivity and growth. Ph.D. thesis, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland (2014)

    Google Scholar 

  4. Bartosik, Ł., Stafiej, J., di Caprio, D.: 3D simulations of ordered nanopore growth in alumina. Electrochim. Acta 188, 218–221 (2016). https://doi.org/10.1016/j.electacta.2015.08.164

    Article  Google Scholar 

  5. di Caprio, D., Stafiej, J.: Simulations of passivation phenomena based on discrete lattice gas automata. Electrochim. Acta 55, 3884–3890 (2010). https://doi.org/10.1016/j.electacta.2010.01.106

    Article  Google Scholar 

  6. di Caprio, D., Stafiej, J.: The role of adsorption in passivation phenomena modelled by discrete lattice gas automata. Electrochim. Acta 56, 3963–3968 (2011). https://doi.org/10.1016/j.electacta.2011.02.018

    Article  Google Scholar 

  7. di Caprio, D., Stafiej, J., Luciano, G., Arurault, L.: 3D cellular automata simulations of intra and intergranular corrosion. Corros. Sci. 112, 438–450 (2016). https://doi.org/10.1016/j.corsci.2016.07.028

    Article  Google Scholar 

  8. Chen, S., Guillemot, G., Gandin, C.A.: Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes. Acta Mater. 115, 448–467 (2016). https://doi.org/10.1016/j.actamat.2016.05.011

    Article  Google Scholar 

  9. Lhuissier, P., de Formanoir, C., Martin, G., Dendievel, R., Godet, S.: Geometrical control of lattice structures produced by EBM through chemical etching: investigations at the scale of individual struts. Mater. Des. 110, 485–493 (2016). https://doi.org/10.1016/j.matdes.2016.08.029

    Article  Google Scholar 

  10. Li, H., Sun, X., Yang, H.: A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys. Int. J. Plast. 87, 154–180 (2016). https://doi.org/10.1016/j.ijplas.2016.09.008

    Article  Google Scholar 

  11. Pagitsas, M., Pavlidou, M., Sazou, D.: Localized passivity breakdown of iron in chlorate- and perchlorate-containing sulphuric acid solutions: a study based on current oscillations and a point defect model. Electrochim. Acta 53, 4784–4795 (2008). https://doi.org/10.1016/j.electacta.2008.01.065

    Article  Google Scholar 

  12. Pavlidou, M., Pagitsas, M., Sazou, D.: Potential oscillations induced by the local breakdown of passive iron in sulfuric acid media. An evaluation of the inhibiting effect of nitrates on iron corrosion. J. Solid State Electrochem. 19(11), 3207–3217 (2015). https://doi.org/10.1007/s10008-015-2812-0

    Article  Google Scholar 

  13. Pérez-Brokate, C.F., di Caprio, D., Mahé, E., Féron, D., de Lamare, J.: Cyclic voltammetry simulations with cellular automata. J. Comput. Sci. 11, 269–278 (2015). https://doi.org/10.1016/j.jocs.2015.08.005

    Article  Google Scholar 

  14. Popova, E., Staraselski, Y., Brahme, A., Mishra, R., Inal, K.: Coupled crystal plasticity - probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. Int. J. Plast. 66, 85–102 (2015). https://doi.org/10.1016/j.ijplas.2014.04.008

    Article  Google Scholar 

  15. Sazou, D., Kominia, A., Pagitsas, M.: Corrosion processes of iron in acidic solutions associated with potential oscillations induced by chlorates and perchlorates. J. Solid State Electrochem. 18, 347–360 (2014). https://doi.org/10.1007/s10008-013-2244-7

    Article  Google Scholar 

  16. Sazou, D., Michael, K., Pagitsas, M.: Intrinsic coherence resonance in the chloride-induced temporal dynamics of the iron electrodissolution-passivation in sulfuric acid solutions. Electrochim. Acta 119, 175–183 (2014). https://doi.org/10.1016/j.electacta.2013.12.029

    Article  Google Scholar 

  17. Sazou, D., Pavlidou, M., Pagitsas, M.: Potential oscillations induced by localized corrosion of the passivity on iron in halide-containing sulfuric acid media as a probe for a comparative study of the halide effect. J. Electroanal. Chem. 675, 54–67 (2012). https://doi.org/10.1016/j.jelechem.2012.04.012

    Article  Google Scholar 

  18. Sikora, E., Macdonald, D.D.: Defining the passive state. Solid State Ionics 94, 141–150 (1997)

    Article  Google Scholar 

  19. Stępień, J., di Caprio, D., Stafiej, J.: 3D simulation studies of the metal passivation process. Electrochim. Acta (submitted)

    Google Scholar 

  20. Uhlig, H.H.: Passivity in metals and alloys. Corros. Sci. 19(7), 777–791 (1979). https://doi.org/10.1016/S0010-938X(79)80075-X

    Article  Google Scholar 

  21. Yang, F., Huang, L., Guo, T., Wang, C., Wang, L., Zhang, P.: The precise preparation of anodic aluminum oxide template based on the current-controlled method. Ferroelectrics 523, 50–60 (2018). https://doi.org/10.1080/00150193.2018.1391540

    Article  Google Scholar 

Download references

Acknowledgements

The authors need to thank the National Science Centre (Poland) for funding – OPUS Project: Numerical simulations of passive layer morphology at the metal electrode, grant number UMO-2015/19/B/ST4/03753.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Stępień or Janusz Stafiej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stępień, J., Stafiej, J. (2018). Potential Oscillations in Cellular Automaton Based Model for Passivation of Metal Surface. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics