Skip to main content

Hardware Implementation of a Biomimicking Hybrid CA

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Included in the following conference series:

Abstract

A hybrid model, combining a Cellular Automaton (CA) and a multi-agent system, was proposed to mimic the computation abilities of the plasmodium of Physarum polycephalum. This model was implemented on software, as well as, on hardware, namely on a Field Programmable Gate Array (FPGA). The specific ability of the P. polycephalum simulated here is given in brief, also bringing attention to the approximation of a Kolmogorov-Uspensky machine (KUM), an alternative to the Turing machine. KUM represent data and program by a labeled indirected graphs and a computation is performed by adding/removing nodes/edges. The proposed model implementation is taking full advantage of the inherent parallel nature of automaton networks, and CA, as a result of the mapping of the local rule to a digital circuit. Consequently, the acceleration of the computation for the hardware implementation, compared to the software, is as high as 6 orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Physarum Machines: Computers From Slime Mould, vol. 74. World Scientific, Singapore (2010)

    Google Scholar 

  2. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92(1–2), 47–52 (2001)

    Article  Google Scholar 

  3. Adamatzky, A.: Advances in Physarum Machines: Sensing and Computing with Slime Mould, 1st edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-26662-6

    Book  Google Scholar 

  4. Nakagaki, T., Yamada, H., Tóth, Á.: Intelligence: maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)

    Article  Google Scholar 

  5. Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans. Nanobiosci. 11(2), 131–134 (2012)

    Article  Google Scholar 

  6. Adamatzky, A.: Developing proximity graphs by physarum polycephalum: does the plasmodium follow the toussaint hierarchy? Parallel Process. Lett. 19(01), 105–127 (2009)

    Article  MathSciNet  Google Scholar 

  7. Aono, M., Zhu, L., Hara, M.: Amoeba-based neurocomputing for 8-city traveling salesman problem. Int. J. Unconv. Comput. 7(6), 463–480 (2011)

    Google Scholar 

  8. Tsuda, S., Aono, M., Gunji, Y.P.: Robust and emergent physarum logical-computing. BioSystems 73(1), 45–55 (2004)

    Article  Google Scholar 

  9. Adamatzky, A.: Bioevaluation of World Transport Networks. World Scientific, Singapore (2012)

    Book  Google Scholar 

  10. Evangelidis, V., Tsompanas, M.A., Sirakoulis, G.C., Adamatzky, A.: Slime mould imitates development of Roman roads in the Balkans. J. Archaeol. Sci. Rep. 2, 264–281 (2015)

    Google Scholar 

  11. Tsompanas, M.A.I., Mayne, R., Sirakoulis, G.C., Adamatzky, A.I.: A cellular automata bioinspired algorithm designing data trees in wireless sensor networks. Int. J. Distrib. Sens. Netw. 11(6), 471045 (2015)

    Article  Google Scholar 

  12. Tero, A., et al.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Article  MathSciNet  Google Scholar 

  13. Jones, J.: From Pattern Formation to Material Computation: Multi-agent Modelling of Physarum Polycephalum, vol. 15. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-16823-4

    Book  Google Scholar 

  14. Gunji, Y.P., Shirakawa, T., Niizato, T., Yamachiyo, M., Tani, I.: An adaptive and robust biological network based on the vacant-particle transportation model. J. Theor. Biol. 272(1), 187–200 (2011)

    Article  Google Scholar 

  15. Tsompanas, M.A.I., Sirakoulis, G.C.: Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspiration Biomim. 7(3), 036013 (2012)

    Article  Google Scholar 

  16. Tsompanas, M.-A.I., Sirakoulis, G.C., Adamatzky, A.: Cellular automata models simulating slime mould computing. In: Adamatzky, A. (ed.) Advances in Physarum Machines. ECC, vol. 21, pp. 563–594. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26662-6_27

    Chapter  Google Scholar 

  17. Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Process. Lett. 17(04), 455–467 (2007)

    Article  MathSciNet  Google Scholar 

  18. Adamatzky, A., Jones, J.: Programmable reconfiguration of physarum machines. Nat. Comput. 9(1), 219–237 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kolmogorov, A.N.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176 (1953)

    Google Scholar 

  20. Kolmogorov, A.N., Uspenskii, V.A.: On the definition of an algorithm. Uspekhi Mat. Nauk 13(4), 3–28 (1958)

    MathSciNet  MATH  Google Scholar 

  21. Blass, A., Gurevich, Y.: Algorithms: a quest for absolute definitions. Bull. EATCS 81, 195–225 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Jones, J.: Approximating the behaviours of Physarum polycephalum for the construction and minimisation of synthetic transport networks. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 191–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03745-0_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail-Antisthenis Tsompanas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madikas, M., Tsompanas, MA., Dourvas, N., Sirakoulis, G.C., Jones, J., Adamatzky, A. (2018). Hardware Implementation of a Biomimicking Hybrid CA. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics