Skip to main content

Stochastic Stability in Schelling’s Segregation Model with Markovian Asynchronous Update

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Included in the following conference series:

  • 1120 Accesses

Abstract

We investigate the dependence of steady-state properties of Schelling’s segregation model on the agents’ activation order. Our basic formalism is the Pollicott-Weiss version of Schelling’s segregation model. Our main result modifies this baseline scenario by incorporating contagion in the decision to move: (pairs of) agents are connected by a second, agent influence network. Pair activation is specified by a random walk on this network.

The considered schedulers choose the next pair nonadaptively. We can complement this result by an example of adaptive scheduler (even one that is quite fair) that is able to preclude maximal segregation. Thus scheduler nonadaptiveness seems to be required for the validity of the original result under arbitrary asynchronous scheduling. The analysis (and our result) are part of an adversarial scheduling approach we are advocating to evolutionary games and social simulations.

This work was supported by a grant of the Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2016-0842, within PNCDI III.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This translates, intuitively, to the following condition: we always give the participants in a swap the chance to immediately reevaluate their last move.

  2. 2.

    This is where we use a property specific to our model of Schelling segregation, as opposed to proving a result valid for general potential game: the property that we employ is that in Schelling’s model any move m “can be undone”. This means that there is a move n using the same pair of vertices as m that brings the system back to where it was before. Move n simply “swaps back” the two agents if they were swapped by m, and leaves them in place otherwise.

References

  1. Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971)

    Article  Google Scholar 

  2. Fatès, N.: A guided tour of asynchronous cellular automata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 15–30. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40867-0_2

    Chapter  MATH  Google Scholar 

  3. Vinković, D., Kirman, A.: A physical analogue of the Schelling model. Proc. Nat. Acad. Sci. 103(51), 19261–19265 (2006)

    Article  Google Scholar 

  4. Pancs, R., Vriend, N.J.: Schelling’s spatial proximity model of segregation revisited. J. Public Econ. 91(1–2), 1–24 (2007)

    Article  Google Scholar 

  5. Zhang, J.: Residential segregation in an all-integrationist world. J. Econ. Behav. Organ. 24(4), 533–550 (2004)

    Article  Google Scholar 

  6. Young, H.P.: Individual Strategy and Social Structure: an Evolutionary Theory of Institutions. Princeton University Press, Princeton (1998)

    Google Scholar 

  7. Brandt, C., Immorlica, N., Kamath, G., Kleinberg, R.: An analysis of one-dimensional Schelling segregation. In: Proceedings of the 44th Annual ACM STOC, pp. 789–804 (2012)

    Google Scholar 

  8. Montanari, A., Saberi, A.: Convergence to equilibrium in local interaction games. In: Proceedings of 50th Annual IEEE FOCS, pp. 303–312. IEEE (2009)

    Google Scholar 

  9. Auletta, V., Ferraioli, D., Pasquale, F., Penna, P., Persiano, G.: Logit dynamics with concurrent updates for local interaction games. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 73–84. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_7

    Chapter  Google Scholar 

  10. Pollicott, M., Weiss, H.: The dynamics of Schelling-type segregation models. Adv. Appl. Math. 27, 17–40 (2001)

    Article  Google Scholar 

  11. Hegselmann, R.: Thomas C. Schelling and James M. Sakoda: the intellectual, technical, and social history of a model. J. Artif. Soc. Soc. Simul. 20(3), 15 (2017)

    Google Scholar 

  12. Fates, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. arXiv preprint nlin/0402016 (2004)

    Google Scholar 

  13. Bouré, O., Fates, N., Chevrier, V.: Probing robustness of cellular automata through variations of asynchronous updating. Nat. Comput. 11(4), 553–564 (2012)

    Article  MathSciNet  Google Scholar 

  14. Foster, D., Young, H.P.: Stochastic evolutionary game dynamics. Theor. Popul. Biol. 38(2), 219–232 (1990)

    Article  MathSciNet  Google Scholar 

  15. Young, H.P.: The dynamics of conformity. In: Social Dynamics, pp. 133–153 (2001)

    Google Scholar 

  16. Page, S.E.: On incentives and updating in agent based models. Comput. Econ. 10(1), 67–87 (1997)

    Article  Google Scholar 

  17. Kandori, M., Mailath, G.J., Rob, R.: Learning, mutation, and long run equilibria in games. Econometrica 61, 29–56 (1993)

    Article  MathSciNet  Google Scholar 

  18. Alós-Ferrer, C., Netzer, N.: The logit-response dynamics. Games Econ. Behav. 68(2), 413–427 (2010)

    Article  MathSciNet  Google Scholar 

  19. Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial scheduling analysis of game-theoretic models of norm diffusion. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 273–282. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6_31

    Chapter  MATH  Google Scholar 

  20. Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial scheduling analysis of discrete models of social dynamics. Math. Struct. Comput. Sci. 22(5), 788–815 (2012)

    Article  Google Scholar 

  21. Dyer, M., Greenhill, C., Goldberg, L.A., Istrate, G., Jerrum, M.: The convergence of iterated prisoner’s dilemma game. Comb. Probab. Comput. 11, 135–147 (2002)

    Article  MathSciNet  Google Scholar 

  22. Hines, P., Dobson, I., Rezaei, P.: Cascading power outages propagate locally in an influence graph that is not the actual grid topology. IEEE Trans. Power Syst. 32(2), 958–967 (2017)

    Google Scholar 

  23. Fatès, N., Morvan, M.: Perturbing the topology of the game of life increases its robustness to asynchrony. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 111–120. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30479-1_12

    Chapter  Google Scholar 

  24. Dennunzio, A., Formenti, E., Kŭrka, P.: Cellular automata dynamical systems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 25–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_2

    Chapter  MATH  Google Scholar 

  25. Blume, L.E.: Population games. In: Durlauf, S., Young, H.P. (eds.) Social Dynamics: Economic Learning and Social Evolution. MIT Press, Cambridge (2001)

    Google Scholar 

  26. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Istrate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Istrate, G. (2018). Stochastic Stability in Schelling’s Segregation Model with Markovian Asynchronous Update. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics