Skip to main content

Size Effect in Cellular Automata Based Disease Spreading Model

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Included in the following conference series:

Abstract

In our paper we use the, recently proposed, model for simulating the process of disease spreading in the environment defined by the Cellular Automaton. The main effort goes to the analysis of the influence of cell size on the epidemic curves and other characteristics related to the studied process. We take into account some real data concerning the occupation in the city of Łódź, which has about 700000 inhabitants. The results show that by marshaling the parameters of simulation we can obtain explicitly different results. This comment applies to a lot of features like: the shape of epidemic curve, the total number of diseased or the amount of ill in particular areas/cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, D., Li, K.C., Peters, T.R., Snively, B.M., Poehling, K.A., Zhou, X.: Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it. Sci. Rep. 5, 8980 (2015)

    Article  Google Scholar 

  2. Aron, J.L., Schwartz, I.B.: Seasonality and period-doubling bifurcations in an epidemic model. J. Theor. Biol. 110, 665–679 (1984)

    Article  MathSciNet  Google Scholar 

  3. Yi, N., Zhang, Q., Mao, K., Yang, D., Li, Q.: Analysis and control of an seir epidemic system with nonlinear transmission rate. Math. Comput. Model. 50, 1498–1513 (2009)

    Article  MathSciNet  Google Scholar 

  4. Schimit, P., Pereira, F.: Disease spreading in complex networks: a numerical study with principal component analysis. Expert Syst. Appl. 97, 41–50 (2018)

    Article  Google Scholar 

  5. Keeling, M., Eames, K.T.D.: Networks and epidemic models. J. Roy. Soc. Interface 2, 295–307 (2005)

    Article  Google Scholar 

  6. Hoya White, S., Martin del Rey, A., Rodriguez Sanchez, G.: Modeling epidemics using cellular automata. Appl. Math. Comput. 186, 193–202 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Pfeifer, B., et al.: A cellular automaton framework for infectious disease spread simulation. Open Med. Inform. J. 2, 70–81 (2008)

    Article  Google Scholar 

  8. Sharma, N., Gupta, A.K.: Impact of time delay on the dynamics of SEIR epidemic model using cellular automata. Phys. A: Stat. Mech. Appl. 471, 114–125 (2017)

    Article  MathSciNet  Google Scholar 

  9. Holko, A., Medrek, M., Pastuszak, Z., Phusavat, K.: Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Syst. Appl. 48, 1–8 (2016)

    Article  Google Scholar 

  10. Lloyd, A.L.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Popul. Biol. 60, 59–71 (2001)

    Article  Google Scholar 

  11. Cartwright, F.F., Biddiss, M.D.: Disease and History, 2nd edn. Sutton Publishing, Stroud (2000)

    Google Scholar 

  12. Johnson, N., Mueller, J.: Updating the accounts: global mortality of the 1918–1920 spanish influenza pandemic. Bull. Hist. Med. 76, 105–115 (2002)

    Article  Google Scholar 

  13. Knobler, S., Mack, A., Mahmoud, A. (eds.): The Threat of Pandemic Influenza: Are We Ready? Workshop Summary. Institute of Medicine (US) Forum on Microbial Threats, National Academies Press (US) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz M. Gwizdałła .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orzechowska, J., Fordon, D., Gwizdałła, T.M. (2018). Size Effect in Cellular Automata Based Disease Spreading Model. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics