Skip to main content

Performance Analysis of Different Learning Algorithms of Feed Forward Neural Network Regarding Fetal Abnormality Detection

  • Chapter
  • First Online:
  • 488 Accesses

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 11120))

Abstract

Ultrasound imaging is one of the safest and most effective method generally used for the diagnosis of fetal growth. The precise assessment of fetal growth at the time of pregnancy is tough task but ultrasound imaging have improved this vital aspect of Obstetrics and Gynecology. In this paper performance of different learning algorithms of Feed forward neural network based on back-propagation algorithm are analyzed and compared. Basically detection of fetal abnormality using neural network is a hybrid method, in which biometric parameters are extracted and measured from segmentation techniques. Then extracted value of biometric parameters are applied on neural network for detect the fetus status. The artificial neural network (ANN) model is applied for the better diagnosis and effective classification purpose. ANN model are design to discriminate normal and abnormal fetus based on the 2-D US images. In this paper, feed forward back- propagation neural network using Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient algorithms are analyzed and used for diagnosis and classification of fetal growth. Performance of these methods are compared and evaluated based on desired output and mean square error. Results found from the Bayesian based neural networks, are in closed confirmation with the real time results. This modeling will help radiologist to take appropriate decision in the boundary line cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Current Status of Abortion in India, Consortium on National Consensus for Medical Abortionindia.http://www.aiims.ac.in/aiims/events/Gynaewebsite/ma_finalsite/report.htm. Accessed 12 Nov 2009

  2. Hearn-Stebbins, B.: Normal fetal growth assessment: a review of the literature and current practice. J. Diagn. Med. Sonog. 11(4), 176–187 (1995)

    Article  Google Scholar 

  3. Honarvar, M., Allahyari, M., Dehbashi, S.: Assessment of gestational age based on ultrasonic femur length after the first trimester: a simple mathematical correlation between gestational age (GA) and femur length (FL). Int. J. Gynecol. 70(3), 335–340 (2000)

    Article  Google Scholar 

  4. Hanna, E.C.W., Youssef, A.: Automated measurements in obstetric ultrasound images. In: Proceedings of the 1997 International Conference on Image Processing. Part 3, Santa Barbara, CA, USA, pp. 504–507. IEEE Comp Soc, Los Alamitos (1997)

    Google Scholar 

  5. Thomas, J.S., Peters II, R.A., Jeanty, P.: Automatic segmentation of ultrasound images using morphological operators. IEEE Trans. Med. Imaging 10(2), 180–186 (1991)

    Article  Google Scholar 

  6. Shrimali, V., Anand, R.S., Kumar, V.: Improved segmentation of ultrasound images for fetal biometry using morphological operators. In: 31st Annual International Conference of the IEEE EMBS, Minneapolis, Minnesota, USA, 2–6 September 2009

    Google Scholar 

  7. Rawat, V., Jain, A., Shrimali, V.: Investigation and assessment of US images for fetal biometry using morphological operator. In: 3rd International Conference on Artificial Intelligence, IICAI 2011, Tumkur (2011)

    Google Scholar 

  8. Rueda, S., et al.: Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge. IEEE Trans. Med. (2013)

    Google Scholar 

  9. Jinhua, Yu., Wang, Y., Chen, P.: Fetal ultrasound image segmentation system and its use in fetal weight estimation. Ultrasound Med. Biol. 46, 1227–1237 (2008)

    Google Scholar 

  10. Pathak, S.D., Chalana, V., Kim, Y.: Interactive automatic fetal head measurements from ultrasound images using multimedia technology. Ultrasound Med. Biol. 23(5), 665–673 (1997)

    Article  Google Scholar 

  11. Nithya, J., Madheswaran, M.: Detection of intrauterine growth retardation using fetal abdominal circumference. In: International Conference on Computer Technology and Development (2009)

    Google Scholar 

  12. Jinhua, Yu., Wang, Y., Chen, P., Shen, Y.: Fetal abdominal contour extraction and measurement in ultrasound images. Ultrasound Med. Biol. 34(2), 169–182 (2008)

    Article  Google Scholar 

  13. Ciurte, A., et al.: Ultrasound image segmentation of the fetal abdomen: a semi-supervised patch-based approach. In: Proceedings of Challenge US: Biometric Measurements from Fetal Ultrasound Images, ISBI 2012, pp. 13–15 (2012)

    Google Scholar 

  14. Carneiro, G., Georgescu, B., Good, S., Comaniciu, D.: Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans. Med. Imaging 27(9), 1342–1355 (2008)

    Article  Google Scholar 

  15. Carneiro, G., Georgescu, B., Good, S.: Knowledge-based automated fetal biometrics using syngo Auto OB measurements. Siemens Medical Solutions (2008)

    Google Scholar 

  16. Sarris, C., et al.: Intra- and inter-observer variability in fetal ultrasound measurements. Ultrasound Obstet. Gynecol. 39(3), 266–273 (2012)

    Article  Google Scholar 

  17. Gurgen, F., Onal, E., Varol, F.G.: IUGR detection by ultrasonography examinations using neural networks. IEEE Eng. Med. Biol. Mag. 16, 55–58 (1997)

    Article  Google Scholar 

  18. Bagi, K.S., Shreedhara, K.S.: Biometric measurement and classification of IUGR using neural networks. In: IEEE Conference on Computing and Informatics (2014)

    Google Scholar 

  19. Yu, L., Guo, Y., Wang, Y., Yu, J., Chen, P.: Segmentation of fetal left ventricle echocardiographic sequence based on dynamic convolutional neural networks. IEEE Trans. Biomed. Imaging (2016). https://doi.org/10.1109/tbme

  20. Khashman, A., Curtis, K.M.: Automatic edge detection of foetal head and abdominal circumferences using neural network arbitration. In: ISIE 1997 - Guimarses, Portugal (1997)

    Google Scholar 

  21. Khashman, A., Curtis, K.: Neural networks arbitration for automatic edge detection of 3-dimensional objects. In: Proceeding of 3rd IEEE Interactional Conference on Electronics, Circuits and Systems, ICECS 1996, pp. 49–52 (1996)

    Google Scholar 

  22. Rahmatullah, B., Papageorghiou, A.T., Noble, J.A.: Image analysis using machine learning anatomical landmarks detection in fetal ultrasound images. In: IEEE Conference on Computer Application, pp. 354–355 (2012)

    Google Scholar 

  23. Bibicu, D., Moraru, L.: Cardiac cycle phase estimation in 2-D Echocardiographic using an artificial neural network. IEEE Trans. Biomed. Eng. 60(5), 1273–1279 (2013)

    Article  Google Scholar 

  24. Elizabeth, D.S., Nehemiah, H.K., Retmin, C.S.: Computer aided diagnosis of lungs cancer based on analysis of the significant slice of chest computed tomography image. J. IET Image Process (2011). https://doi.org/10.1049/iet-ipr.2010.0521

    Article  Google Scholar 

  25. Perez, R.R., Marques, A., Mohammadi, F.: The application of supervised learning through feed –forward neural networks for ECG signal classification. In: IEEE Conference on Electrical and Computer Engineering (2016)

    Google Scholar 

  26. Rawat, V., Jain, A., Shrimali, V., Rawat, A.: Automatic detection of fetal abnormality using head and abdominal circumference. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9876, pp. 525–534. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45246-3_50

    Chapter  Google Scholar 

  27. Gonzales, R., Wood, R., Eddins, S.: Digital Image Processing Using MATLAB. Gates Mark Publishing, Houston (2009)

    Google Scholar 

  28. Rawat, V., Jain, A., Shrimali, V.: Investigation and assessment of disorder of ultrasound B-mode images. Int. J. Comput. Sci. Inf. Secur. 7(2) (2010)

    Google Scholar 

  29. Rawat, V., Jain, A., Shrimali, V.: Automatic assessment of fetal biometric parameter using GVF snakes. J. Biomed. Eng. Technol. Indersci. 12(4), 221–233 (2013)

    Google Scholar 

  30. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 321–331 (1988)

    Article  Google Scholar 

  31. XU, C., Prince, J.L.: Snakes, shapes and gradient vector flow. IEEE Trans. Image Process. 7, 359–369 (1998)

    Article  MathSciNet  Google Scholar 

  32. Cohen, M.: Neural Networks and artificial intelligence for biomedical engineering. In: IEEE Press Series on Biomedical Engineering (2000)

    Google Scholar 

  33. Rojas, R.: Neural Networks: A Systematical Introduction, vol. 01. Springer, Cham (1996). https://doi.org/10.1007/978-3-642-61068-4

    Book  MATH  Google Scholar 

  34. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  35. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  36. Hagan, M.T., Menhaj, M.: Training feed forward network with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1999)

    Article  Google Scholar 

  37. Kisi, O., Uncuoghlu, E.: Comparison of three back propagation training algorithm for two case studies. Indian J. Eng. Mater. Sci. 12, 434–444 (2005)

    Google Scholar 

  38. Wilamowski, B.M.: Neural network architectures and learning algorithms. IEEE Ind. Electron. Mag. 3(4), 56–63 (2009)

    Article  Google Scholar 

  39. Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning neural networks. 6, 525–553 (1993)

    Google Scholar 

  40. Yue, Z., Songzheng, Z., Tianshi, L.: Bayesian regularization BP neural network model for predicting oil–gas drilling cost. Int. Conf. Bus. Manag. Electron. Inf. (BMEI) 2, 483–487 (2011)

    Google Scholar 

  41. Winham, S., Slater, A.J.: A comparison of internal validation techniques for multifactor dimensionality reduction. BMC Bioinf. 1–16 (2010)

    Google Scholar 

  42. Onyia, T.: Analysis of Case Study: Fetal Abnormality. Grand Canyon University: PHI 413V, 13 November 2016

    Google Scholar 

  43. Ferreira da Costa, L.L., Hardy, E., Duarte Osis, M.J., Faúndes, A.: Termination of pregnancy for fetal abnormality incompatible with life: women’s experiences in Brazil. Report Health Matters 13(26), 139–146 (2005)

    Google Scholar 

  44. Pregnancy for Fetal Abnormality in England, Scotland and Wales, Report of a Working Party, May 2010

    Google Scholar 

  45. Baumgartner, C.F., et al.: SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imaging 36(11), 2204–2215 (2017)

    Article  Google Scholar 

  46. Baumgartner, C.F., Kamnitsas, K., Matthew, J., Smith, S., Kainz, B., Rueckert, D.: Real-time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, Mert R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 203–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_24

    Chapter  Google Scholar 

  47. Jia, W., Yang, C., Zhong, G., Zhou, M., Wu, S.: Fetal ECG extraction based on adaptive linear neural network. In: 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, pp. 899–902 (2010). https://doi.org/10.1109/bmei.2010.5639886

  48. Supriyanto, E., Wee, L.K., Min, T.Y.: Ultrasonic marker pattern recognition and measurement using artificial neural network. In: SIP 2010 Proceedings of the 9th WSEAS International Conference on Signal Processing, Catania, Italy, pp. 35–40, 29–31 May 2010

    Google Scholar 

  49. Bijma, H.H., van der Heide, A., Wildschut, H.I.J.: Eur “Clinics Obstet Gynaecol”. 3, 89 (2007). https://doi.org/10.1007/s11296-007-0070-0

    Article  Google Scholar 

  50. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  51. Kröse, B., Smagt, P.V.D.: An introduction to Neural Networks. The University of Amsterdam, Amsterdam (1996)

    Google Scholar 

  52. Christodoulou, C.G., Georgiopoulos, M.: Application of Neural Networks in Electromagnetics. Artech House, Norwood (2001)

    Google Scholar 

  53. Sharma, M., Achuth, P., Pachoria, R.B., Gadreb, V.M.: A parametrization technique to design joint time-frequency optimized discrete-time biorthogonal wavelet bases. Sig. Process. 135, 107–120 (2017)

    Article  Google Scholar 

  54. Sharma, M., Dhere, A., Pachori, R.B., Gadre, V.M.: Optimal duration-bandwidth localized antisymmetric bi-orthogonal wavelet filters. Sig. Process. 134, 87–99 (2017)

    Article  Google Scholar 

  55. Sharma, M., Bhati, D., Pillai, S., Pachori, R.B., Gadre, V.M.: Design of time frequency localized filter banks: transforming non convex problem into convex via semidefined relaxation techniques. Circuit Syst. Signal Process. 1–18 (2016)

    Google Scholar 

  56. Sharma, M., Pachori, R.B., Acharya, U.R.: A new approach to characterize epileptic seizures using analytic time frequency flexible wavelet transform and fractal dimension. Pattern Recognit. Lett. (2017). http://www.sciencedirect.com/science/article/pii/S0165168416303310

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhi Rawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, V., Jain, A., Shrimali, V., Raghuvanshi, S. (2018). Performance Analysis of Different Learning Algorithms of Feed Forward Neural Network Regarding Fetal Abnormality Detection. In: Thanh Nguyen, N., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence XXX. Lecture Notes in Computer Science(), vol 11120. Springer, Cham. https://doi.org/10.1007/978-3-319-99810-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99810-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99809-1

  • Online ISBN: 978-3-319-99810-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics