Skip to main content

A New Insight—Proxy Re-encryption Under LWE with Strong Anti-collusion

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11125))

Abstract

Proxy re-encryption is a special type of public key encryption that allows an intermediate proxy to transform a ciphertext from one public key to another without learning any information about the original message. Therefore, it can be regarded as a consignation of decryption right. In this paper, we put forward two novel definitions of anti-collusion called strong anti-collusion and weak anti-collusion, and propose an improved strong anti-collusion lattice based proxy re-encryption scheme. Moreover, our scheme based on the hardness of standard Learning With Error (LWE) problem is the CPA secure in the standard model, which can be reduced to the worst-case lattice hard problems. In addition, we give a detailed analysis of key privacy and proof of security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model. Manuscript, July 2009

    Google Scholar 

  2. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  3. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

    Chapter  Google Scholar 

  5. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  6. Singh, K., Rangan, C.P., Banerjee, A.K.: Lattice based identity based proxy re-encryption scheme. J. Internet Serv. Inf. Secur. 3(3/4), 38–51 (2013)

    Google Scholar 

  7. Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_5

    Chapter  Google Scholar 

  8. Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1_13

    Chapter  Google Scholar 

  9. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 1–18. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4_1

    Chapter  Google Scholar 

  10. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_19

    Chapter  Google Scholar 

  11. Jiang, Z., Zhenfeng, Z., Chen, Y.: PRE: stronger security notions and efficient construction with non-interactive opening. Theor. Comput. Sci. 542, 1–16 (2014)

    Article  Google Scholar 

  12. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 185–194 (2007)

    Google Scholar 

  13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 197–206 (2008)

    Google Scholar 

  14. Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. IACR Cryptology ePrint Archive, p. 351 (2009)

    Google Scholar 

  15. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5

    Chapter  MATH  Google Scholar 

  16. Xagawa, D.K.: Cryptography with lattices (2010)

    Google Scholar 

  17. Daniele, M., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0897-7

    Book  MATH  Google Scholar 

  18. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)

    Google Scholar 

  19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)

    Article  MathSciNet  Google Scholar 

  20. Cramer, R., Damgård, I.: On the amortized complexity of zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_11

    Chapter  Google Scholar 

  21. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: Proceedings - Annual IEEE Symposium on Foundations of Computer Science, pp. 372–381 (2004)

    Google Scholar 

  22. Ateniese Giuseppe, F., Kevin, G.M., Susan, H.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. (TISSEC) 9(1), 1–30 (2006)

    Article  Google Scholar 

  23. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_19

    Chapter  Google Scholar 

  24. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_21

    Chapter  Google Scholar 

  25. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  26. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  27. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  28. Wojciech, B.: New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen 296(1), 625–635 (1993)

    Article  MathSciNet  Google Scholar 

  29. Wojciech, B.: Inequalities for convex bodies and polar reciprocal lattices in \(R^{n}\). Discret. Comput. Geom. 13(1), 217–231 (1995)

    MathSciNet  Google Scholar 

  30. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7

    Chapter  Google Scholar 

  31. Weng, J., Deng, R.H., Liu, S., Chen, K.: Chosen-ciphertext secure bidirectional proxy re-encryption schemes without pairings. Inf. Sci. 180(24), 5077–5089 (2010)

    Article  MathSciNet  Google Scholar 

  32. Xagawa, K., Tanaka, K.: Proxy re-encryption based on learning with errors. In: Proceedings of the 2010 Symposium on Cryptography and Information Security, pp. 29–35 (2010)

    Google Scholar 

  33. Nunez, D., Agudo, I., Lopez, J.: NTRUReEncrypt: an efficient proxy re-encryption scheme based on NTRU. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, pp. 179–189 (2015)

    Google Scholar 

  34. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3), 13 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Singh, K., Rangan, C.P., Banerjee, A.K.: Cryptanalysis of unidirectional proxy re-encryption scheme. In: Linawati, M.M.S., Neuhold, E.J., Tjoa, A.M., You, I. (eds.) ICT-EurAsia 2014. LNCS, vol. 8407, pp. 564–575. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55032-4_58

    Chapter  Google Scholar 

  36. Kim, K.S., Jeong, I.R.: Collusion-resistant unidirectional proxy re-encryption scheme from lattices. J. Commun. Netw. 18(1), 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  37. Nuñez, D., et al.: Proxy re-encryption: analysis of constructions and its application to secure access delegation. J. Netw. Comput. Appl. 87, 193–209 (2017)

    Article  Google Scholar 

  38. Shao, J.: SCCR: a generic approach to simultaneously achieve CCA security and collusion resistance in proxy re encryption. Secur. Commun. Netw. 4(2), 122–135 (2011)

    Article  Google Scholar 

  39. Zhang, L., Ma, H., Liu, Z., Dong, E.: Security analysis and improvement of a collusion-resistant identity-based proxy re-encryption scheme. In: Barolli, L., Xhafa, F., Yim, K. (eds.) BWCCA 2016. LNDECT, vol. 2, pp. 839–846. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49106-6_86

    Chapter  Google Scholar 

  40. Lu, Y., Li, J.: A pairing-free certificate-based proxy re-encryption scheme for secure data sharing in public clouds. Future Gener. Comput. Syst. 62, 140–147 (2016)

    Article  Google Scholar 

  41. Ge, C.: Identity-based conditional proxy re-encryption with fine grain policy. Comput. Stand. Interfaces 52, 1–9 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant No. 61502044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, W., Wen, Q., Li, W., Zhang, H., Jin, Z. (2018). A New Insight—Proxy Re-encryption Under LWE with Strong Anti-collusion. In: Su, C., Kikuchi, H. (eds) Information Security Practice and Experience. ISPEC 2018. Lecture Notes in Computer Science(), vol 11125. Springer, Cham. https://doi.org/10.1007/978-3-319-99807-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99807-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99806-0

  • Online ISBN: 978-3-319-99807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics